Leitlinien für das Verputzen von Mauerwerk und Beton
Grundlagen für die Planung, Gestaltung und Ausführung
An der Erarbeitung dieser Leitlinien haben die folgenden Verbände und Institutionen mitgewirkt:

Industrieverband WerkMörtel e.V.
www.iwm.de

Bundesverband Ausbau und Fassade im ZDB
www.stuckateur.de

Bundesverband Farbe Gestaltung Bautenschutz
www.farbe.de

Arbeitsgemeinschaft Mauerziegel im Bundesverband der Deutschen Ziegelindustrie e.V.
www.ziegel.de

Arbeitsgemeinschaft Ziegelelementbau e.V. im Bundesverband der Deutschen Ziegelindustrie e.V.
www.ziegelelementbau.de

Bundesverband der Gipsindustrie e.V.
www.gips.de

Bundesverband Kalksandsteinindustrie e.V.
www.kalksandstein.de

Bundesverband Leichtbeton e.V.
www.leichtbeton.de

Bundesverband Porenbetonindustrie e.V.
www.bv-porenbeton.de

Bundesverband der Deutschen Transportbetonindustrie e.V.
www.transportbeton.org

Dachverband Lehm e.V.
www.dachverband-lehm.de

Deutsche Gesellschaft für Mauerwerks- und Wohnungsbau e.V.
www.dgfm.de

Fachverband Fliesen und Naturstein im ZDB
www.fachverbandfliesen.de

Verband Bauen in Weiß e.V.
www.vbiw.de

Verband der deutschen Lack- und Druckfarbenindustrie e.V.
www.lackindustrie.de

Die Leitlinien werden von diesen Verbänden und Institutionen gemeinsam getragen.
Vorwort

Innenräume werden ebenfalls verputzt und tragen wesentlich zur Gestaltung der Wohnräume bei. Aufgrund ihres großen Flächenanteils bestimmen sie auch maßgeblich das Innenraumklima.

So sind gerade die Putze ein entscheidender Faktor für Langlebigkeit und Werterhalt eines Hauses, für ein sicheres und gesundheitsverträgliches Wohnen sowie für ein verantwortungsbewusstes Bauen im Einklang mit Natur und Umwelt.

Die vorliegenden Leitlinien haben sich zu einem Standardwerk für das Verputzen entwickelt. Nun liegen sie in der zweiten Auflage vor. Sie wurden vollständig überarbeitet und aktualisiert.

Wir bedanken uns bei den zahlreichen Verbänden und Institutionen und allen, die aktiv an den Leitlinien mitgearbeitet haben.

Die Herausgeber
Duisburg, Berlin und Frankfurt im November 2014

Die wichtigsten Änderungen der 2. Auflage im Überblick:

- Berücksichtigung des aktuellen Standes der deutschen und europäischen Normung
- Abschnitt „Innenputze“ erweitert
- Geltungsbereich auf Putze mit organischen Bindemitteln ausgedehnt
- Lehmputze berücksichtigt
- Anforderungen an Putz unter Fliesen aufgenommen
- Text vollständig redaktionell überarbeitet
Inhalt

1 Geltungsbereich und Zielsetzung 4
2 Einleitung ... 5
3 Putzgrund ... 6
 3.1 Mauerwerk ... 6
 3.1.1 Allgemeines ... 6
 3.1.2 Ziegel-Mauerwerk ... 7
 3.1.3 Kalksandstein-Mauerwerk 8
 3.1.4 Porenbeton-Mauerwerk .. 8
 3.1.5 Leichtbeton-Mauerwerk .. 8
 3.2 Geschosshohe Wandelemente und
 Wandtafeln .. 9
 3.2.1 Allgemeines ... 9
 3.2.2 Wandelemente aus Ziegeln 9
 3.2.3 Mauertafeln aus Kalksandstein 9
 3.2.4 Wandtafeln und Wandelemente
 aus Porenbeton ... 9
 3.2.5 Wandtafeln und Wandelemente
 aus Normalbeton .. 9
 3.2.6 Wandelemente aus Normalbeton 10
 3.3 Wände aus Ortbeton... 10
 3.4 Wände mit vorhandenem Putz 10
 3.5 Decken ... 11
 3.5.1 Allgemeines ... 11
 3.5.2 Decken aus Ortbeton .. 11
 3.5.3 Deckenelemente aus Beton 11
 3.5.4 Ziegel-Elementdecken und
 Ziegel-Einhängedecken ... 11
 3.5.5 Decken aus Porenbeton ... 11
4 Außenputz ... 12
 4.1 Überblick ... 12
 4.2 Mineralische Putzmörtel .. 13
 4.3 Putze mit organischen Bindemitteln 14
 4.4 Putzträger, Putzbewehrung/-armierung
 (Gewebeanlage) .. 14
 4.5 Regenschutzwirkung von Außenputzen
 und Beschichtungen ... 15
 4.6 Putzsysteme und typische Kennwerte 16
 4.7 Normalputz ... 17
 4.8 Leichtputzsysteme ... 18
 4.9 Armierungsputz ... 18
 4.10 Oberputze ... 20
 4.11 Wärmédämmputzsysteme .. 21
 4.12 Sockelputze ... 21
 4.13 Sanierputze und Sanierputzsysteme
 nach WTA ... 22
 4.14 Kellerwandaußenputze ... 22
5 Außenputz: Richtige Putzauswahl
bei verschiedenen Untergründen 23
 5.1 Untergrund ... 23
 5.1.1 Steintyp ... 23
 5.1.2 Qualität des Putzgrundes/
 Ausführung des Mauerwerks 23
 5.2 Exposition/Lage des Gebäudes 25
 5.3 Gestaltung/Optik ... 25
 5.3.1 Art des Oberputzes .. 25
 5.3.2 Farbton des Oberputzes 25
 5.4 Auswahl des Putzsystems 26
6 Außenputz: Prüfung und Beurteilung des Putzgrundes 28
6.1 Prüfung des Untergrundes 28
6.2 Maßtoleranzen nach DIN 18202 29
7 Außenputz: Hinweise zur Putzausführung ... 30
7.1 Berücksichtigung der Witterungseinflüsse .. 30
7.2 Vorbereitung und Vorbehandlung des Putzgrundes 30
7.2.1 Allgemeines ... 30
7.2.2 Vorbereitung des Putzgrundes 30
7.2.3 Vorbehandlung des Putzgrundes 30
7.2.4 Unterschiedliche Putzgründe 31
7.3 Aufbringen des Mörtels .. 33
7.3.1 Allgemeines ... 33
7.3.2 Unterputz ... 33
7.3.3 Putzbewehrung ... 33
7.3.4 Wärmédämmputzsysteme 33
7.3.5 Sanierputze ... 33
7.3.6 Putze mit organischen Bindemitteln 34
7.4 Standzeiten ... 34
7.5 Putzdicken .. 34
7.6 Egalisationsanstriche ... 35
7.7 Beschichtungen (Anstriche) .. 35
8 Innenputz ... 36
8.1 Überblick ... 36
8.2 Mineralische Innenputze ... 36
8.2.1 Gipsputze .. 36
8.2.2 Kalkputze .. 37
8.2.3 Kalkzementputze .. 37
8.2.4 Zementputze ... 37
8.2.5 Mineralische Edelputze (Dekorputze) 37
8.2.6 Lehmpute .. 37
8.3 Innenputze mit organischen Bindemitteln 38
8.4 Auswahl von Innenputzsystemen .. 38
8.4.1 Auswahl nach Art und Eigenschaften des Untergrundes 38
8.4.2 Auswahl nach Art der Verwendung 39
8.4.3 Auswahl nach Art der nachfolgenden Oberflächenbehandlung 40
8.5 Vorbereitung des Putzgrundes, Putzgrundvorbehandlung 40
8.6 Aufbringen des Mörtels .. 40
8.7 Austrocknen der Putzflächen 41
8.8 Putzdicken .. 42
8.9 Oberflächenqualität .. 42
8.10 Putz unter Fliesen und Platten 44
9 Mitgeltende Normen und Merkblätter ... 47
9.1 Normen ... 47
9.2 Richtlinien, Merkblätter und sonstige Literatur 49
Anhang
1 Hinweise zur Ausschreibung ... 50
2 Partner für Qualität ... 51
Diese Leitlinien wenden sich an Architekten, Planer und ausführende Handwerksbetriebe sowie an interessierte Bauherren. Sie beschreiben das Verputzen von Wänden und Decken im Außen- und Innenbereich.

Ziel der Leitlinien ist es, eine verlässliche, praxisgerechte und leicht verständliche Grundlage für die Planung und Ausführung von Putzarbeiten zu schaffen, die einerseits auf den aktuell gültigen Regelwerken basiert und andererseits die praktischen Erfahrungen mit den verschiedensten Baustoffen und Bauweisen berücksichtigt.

Putzmörtel als Baustellenmischung ist in Deutschland kaum noch anzutreffen. Er wird deshalb in diesen Leitlinien nicht behandelt.

Jede verputzte Fläche ist ein handwerklich hergestelltes „Unikat“. Deshalb spielen für die Ausführungsqualität auch die jeweiligen individuellen Randbedingungen „vor Ort“ eine wichtige Rolle. Jahreszeit, Temperatur, Wind, Sonneneinstrahlung, Feuchtezustand des Putzgrundes, Qualität und Oberflächenbeschaffenheit der zu verputzenden Fläche und viele andere Einflüsse müssen berücksichtigt werden.

Tabelle 1: Übersicht Außen- und Innenputze

<table>
<thead>
<tr>
<th>Mörtelart</th>
<th>Anwendung a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>innen</td>
</tr>
<tr>
<td>Mineralische Putze (Trockenmörtel)</td>
<td></td>
</tr>
<tr>
<td>Luftkalkmörtel, Mörtel mit hydraulischem Kalk</td>
<td>X</td>
</tr>
<tr>
<td>Kalkzementmörtel, Mörtel mit hydraulischem Kalk bzw. Putz- und Mauerbinder</td>
<td>X</td>
</tr>
<tr>
<td>Zementmörtel mit oder ohne Zusatz von Kalkhydrat</td>
<td>X</td>
</tr>
<tr>
<td>Gipsmörtel und gipshaltige Mörtel</td>
<td>X</td>
</tr>
<tr>
<td>Lehmmörtel</td>
<td>X</td>
</tr>
<tr>
<td>Putze mit organischen Bindemitteln (Pastöse Produkte)</td>
<td></td>
</tr>
<tr>
<td>Dispersions-Silikatputz (Silikatputz); die eigenschaftsbestimmenden Bindemittel sind Kali-Wasserglas und Polymerdispersion</td>
<td>X</td>
</tr>
<tr>
<td>Dispersionsputz (Kunstharzputz); das eigenschaftsbestimmende Bindemittel ist Polymerdispersion</td>
<td>X</td>
</tr>
<tr>
<td>Siliconharzputz; die eigenschaftsbestimmenden Bindemittel sind Siliconharzemulsion und Polymerdispersion</td>
<td>X</td>
</tr>
</tbody>
</table>

a) Der Anwendungsbereich ist vom Hersteller anzugeben.
3.1 Mauerwerk

3.1.1 Allgemeines

Mauerwerk ist grundsätzlich nach DIN EN 1996 (Eurocode 6) und den Nationalen Anhängen (NA) oder nach DIN 1053 zu errichten. Mauerwerk wird aus Mauersteinen und Mauermörtel hergestellt, die zusammen dessen Eigenschaften bestimmen.

Es muss im Verband gemauert werden, d. h. die Stoßfugen übereinanderliegender Schichten müssen so versetzt werden, dass das Überbindemaß mindestens 0,4 x Steinhöhe (h) bzw. 45 mm beträgt. Dabei ist der höhere Wert maßgebend (siehe Bilder auf S. 7 unten). Dies ist nicht nur aus statischen Gründen von großer Bedeutung, sondern auch, um für den Putz eine ausreichende Risssicherheit zu gewährleisten.

Neben den üblichen Schichtmaßen von 12,5 und 25 cm werden auch großformatige Steine bzw. Elemente mit Schichthöhen von 50 oder 62,5 cm und Längen bis 1,50 m eingesetzt. Hier sind in den jeweiligen bauaufsichtlichen Zulassungen bzw. im Eurocode 6 teilweise geringere Überbindemaße erlaubt.

Die Lagerfuge wird bei einschaligen Außenwänden entweder mit Normal- oder Leichtmauermörtel oder mit Dünnbettmörtel vollflächig ausgeführt.

Die Eigenschaften der verschiedenen Mauermörtel sind in DIN EN 998-2 und DIN V 20000-412 bzw. DIN V 18580 geregelt.

Im Regelfall besitzen die Kopfseiten eine Nut-Feder-Ausbildung, so dass die Steine knirsch gestoßen werden können und die Stoßfugen mörtelfrei bleiben. Die Steine gelten dann als knirsch verlegt, wenn sie ohne Mörtel so dicht aneinander verlegt werden, wie dies wegen der herstellungsbedingten Unebenheiten der Stoßfugenflächen möglich ist. Die Breite der Stoßfuge soll dabei 5 mm nicht überschreiten.

Wenng trotzdem einzelne Zwischenräume entstehen, die größer als 5 mm sind, so müssen sie direkt beim Mauern beidseitig an der Wandoberfläche mit Mörtel verschlossen werden. Das Gleiche gilt für Mörteltaschen und Verzahnungen (Nuttiefe > 8 mm) an Wandenden und Mauerecken sowie Fehlstellen in der Wand. Wurde dies versäumt, sind die Fugen und Fehlstellen vor dem Putzgrund

Auch „gefüllte“ Mauersteine vor Feuchtigkeit schützen!

Verputzen nachträglich mit geeignetem Mörtel und unter Beachtung der dann erforderlichen Standzeiten (siehe Abschnitt 5.1.2 und Tabelle 8) zu schließen.

Wenn bei Steinen mit glatter Kopfseite die Stoßfuge vermörtelt wird, muss die Stoßfugenbreite rund 10 mm, bei Dünnbett-Mauerwerk ca. 1 bis 3 mm betragen.

Mauerwerk muss während und nach dem Errichten grundsätzlich vor eindringender Feuchtigkeit durch geeignete Maßnahmen (z. B. Abdecken der Mauerkrone und der Fensterbrüstungen) geschützt werden. Dafür gibt es geeignete Abdeckungen (siehe Bilder oben).

Bis zu einer ausreichenden Erhärtung des Maurermörtels ist das Mauerwerk vor Frost zu schützen.

3.1.2 Ziegel-Mauerwerk

Ziegel nach DIN V 105-100 oder nach DIN EN 771-1 in Verbindung mit der Anwendungsnorm DIN V 20000-401 oder nach einer allgemeinen baufälligen Zulassung bestehen aus gebranntem Ton.

Für einschalige zu verputzende Ziegelaufwände werden heute überwiegend wärmedämmende Ziegel mit Bemessungswerten der Wärmeleitfähigkeit für das Mauerwerk zwischen 0,06 und 0,14 W/(m·K) eingesetzt.

Aufgrund ihrer porigen Struktur und der hohen Kapillardität besitzen Ziegel im Allgemeinen ein hohes Saugvermögen, auf das die dafür geeigneten Putzsysteme eingestellt sind (siehe Tabelle 7).

Überbindemaß lₜₐ für fachgerecht ausgeführtes Mauerwerk nach DIN 1053-1 bzw. DIN EN 1996-1-1 in Verbindung mit dem Nationalen Anwendungs­dokument (NA)
3.1.3 Kalksandstein-Mauerwerk
Kalksandsteine sind Mauersteine, die aus den natürlichen Rohstoffen Kalk und kieselsäurehaltigen Zuschlägen (Quarzsand) hergestellt, nach innigem Mischen verdichtet, geformt und unter Dampfdruck gehärtet werden.

In der Regel besitzen Kalksandsteine eine kapillare Saugfähigkeit, die wegen der besonders feinporigen Struktur über einen längeren Zeitraum anhalten kann. Geeignete Putzsysteme sind darauf abgestimmt (siehe Tabelle 7).

3.1.4 Porenbeton-Mauerwerk

Die Bemessungswerte der Wärmeleitfähigkeit liegen meist zwischen 0,06 und 0,14 W/(m·K).

3.1.5 Leichtbeton-Mauerwerk
Leichtbeton besteht aus dem Bindemittel Zement und leichten Gesteinskörnungen („Leichtzuschlägen“).

Leichtbeton-Mauersteine werden nach DIN EN 771-3 in Verbindung mit der DIN V 20000-403 sowie der DIN V 18151-100, DIN V 18152-100 und der DIN V 18153-100 gefertigt. Im Außenwandbereich kommen in Deutschland aber hauptsächlich Steine zum Einsatz, deren Eigenschaften über allgemeine bauaufsichtliche Zulassungen geregelt sind und die Bemessungswerte für Wärmeleitfähigkeiten des Mauerwerks zwischen 0,055 und 0,16 W/(m·K) besitzen.

Mauerwerk aus Leichtbetonsteinen nimmt kapillar nur wenig Wasser auf, dieser Untergrund kann deshalb als schwach saugend angesehen werden. Geeignete Putzsysteme sind darauf abgestimmt (siehe Tabelle 7).
3.2 Geschosshohe Wandelemente und Wandtafeln

3.2.1 Allgemeines

Geschosshohe Wandelemente und Wandtafeln werden nach DIN 1053-4 oder allgemeiner bauaufsichtlicher Zulassung werkseitig hergestellt.

Die Montagefugen zwischen den Elementen (Montage-Stoßfugen) und am Fuß der Elemente (Montage-Lagerfugen) müssen fachgerecht ausgeführt und geschlossen werden.

Für das Überputzen der Montagefugen sind in jedem Fall die Empfehlungen und Angaben des Herstellers der Wandelemente zu beachten.

3.2.2 Wandelemente aus Ziegeln

3.2.3 Mauertafeln aus Kalksandstein

Ähnlich wie Ziegelsteine lassen sich auch Kalksandsteine werkseitig zu Mauertafeln verarbeiten, die putztechnisch wie baustellenseitig errichtetes Mauerwerk aus Kalksandstein behandelt werden können.

3.2.4 Wandtafeln und Wandelemente aus Porenbeton

Wandtafeln werden werkseitig aus Mauersteinen errichtet. Als Putzgrund sind Wandtafeln aus Porenbeton wie baustellenseitig errichtetes Mauerwerk zu behandeln.

Großformatige Wandelemente aus Porenbeton werden entweder senkrecht oder waagerecht auf der Baustelle zu Wandflächen verbunden, die i. d. R. beschichtet werden, aber auch verputzt werden können.

3.2.5 Wandtafeln und Wandelemente aus Leichtbeton

Wandtafeln aus Leichtbeton werden werkseitig aus Mauersteinen hergestellt.

Geschosshohe Wandelemente aus Leichtbeton können grundsätzlich aus zwei verschiedenen Betonarten hergestellt werden, die sich in ihren Eigenschaften deutlich unterscheiden. Wandelemente für Außenwände werden meist aus haufwerksporigem Leichtbeton, solche für tragende Innenwände oft aus gefügedichtem Leichtbeton gefertigt.

Wandelemente mit haufwerksporiger Struktur

Bei wärmedämmenden Außenwänden kommt häufig Leichtbeton mit haufwerksporigem Gefuge nach DIN EN 1520 und DIN 4213 zum Einsatz (Trockenrohdichten zwischen 500 und 1 200 kg/m³).

Die raue, griffige Struktur dieser Elemente stellt einen Putzgrund dar, dessen Eigenschaften mit denen von Mauerwerk aus Leichtbetonsteinen vergleichbar sind (siehe Abschnitt 3.1.5).

Aufgrund der geringen kapillaren Saugfähigkeit dieses Betons wird dem Putz nur wenig Wasser durch den Untergrund entzogen.

Wandelemente mit gefügedichter Struktur

Vor allem tragende Innenwände werden dagegen aus Leichtbeton mit geschlossenem Gefuge nach DIN 1045 hergestellt (Trockenrohdichten zwischen 1000 und 2000 kg/m³).
Die Eigenschaften dieser Wände sind mit Flächen aus Normalbeton vergleichbar. Äußerlich sind Normalbeton und Leichtbeton mit geschlossenem Gefüge fast nicht zu unterscheiden. In beiden Fällen zeigt sich eine glatte Oberfläche mit wenig Poren. Da nur wenige Kapillarporen vorliegen, trocknen solche Betone entsprechend langsam aus (siehe Abschnitt 8.4).

3.2.6 Wandelemente aus Normalbeton

Fertig auf die Baustelle gelieferte Wandelemente aus Normalbeton verhalten sich im Hinblick auf ihre Eigenschaften als Putzgrund ähnlich wie auf der Baustelle geschalte Wände aus Ortbeton und trocknen entsprechend langsam aus.

3.3 Wände aus Ortbeton

Bedingt durch das dichte Betongefüge kann das Trocknen lange Zeiträume in Anspruch nehmen. Das ist insbesondere bei größeren Bauteildicken von Bedeutung.

Für einen ausreichenden Verbund mit der relativ glatten Betonoberfläche und dem aufzubringenden Putz muss eine Untergrundvorbereitung vorgesehen werden oder es werden Putze mit speziellen Eigenschaften verwendet (siehe Abschnitt 7.2.2).

In Abhängigkeit von ihrem Restfeuchtegehalt können Betone als schwach saugende Untergründe eingestuft werden, d.h. sie entziehen dem Putz kaum Wasser.

Betonflächen, die verputzt werden sollen, müssen trocken (Hinweis für gipshaltige Putze siehe Infokasten auf S. 37), sauber, staub- und fettfrei, besonders aber auch frei von Trennmittelrückständen sein, die die Haftung des Putzes einschränken können.

3.4 Wände mit vorhandenem Putz

Auch Wände, die bereits mit einem Putz versehen sind, können neu verputzt werden, ohne dass dieser Putz entfernt werden muss. Dazu muss der vorhandene Putz aber sauber, fest und tragfähig sein. Er darf keine losen Bestandteile aufweisen und nicht absanden.

Bei vorhandenen Beschichtungen auf Putz, z.B. Anstrichen, sind diese auf ihre Eignung für einen nachfolgenden Putzauftrag besonders zu prüfen (siehe Abschnitt 6.1) und ggf. entsprechend vorzubehandeln.
3.5 Decken

3.5.1 Allgemeines

3.5.2 Decken aus Ortbeton
Decken aus Ortbeton werden vor Ort geschalt und können aus Normal- oder Leichtbeton bestehen.

3.5.3 Deckenelemente aus Beton
Fertigdecken aus Beton werden in sehr großer Zahl einge­baut, sie haben die anderen Fertigdeckensysteme und vor Ort geschalte Betondecken weitgehend verdrängt.
Man unterscheidet Decken aus massivem, bewehrtem Normal- oder Leichtbeton nach DIN 1045, die werk­seitig bereits einbauricht und komplett hergestellt werden, und Elementdecken mit Ortbetonergänzung nach DIN EN 18747, die auf der Baustelle noch mit einer Decklage aus Beton versehen werden (sogenannte „Filigran­decken“).

3.5.4 Ziegel-Elementdecken und Ziegel-Einhängedecken
Ziegel-Elementdecken nach DIN 1045-100 werden raum­lang in unterschiedlichen Breiten verkümmert. Die vorgefertigten Elemente bestehen aus speziell geformten Deckenziegeln und da­zwischen liegenden bewehrten Betonrippen, die von einer Ziegelschale umschlossen sind, so dass ein gleichmäßiger Putzgrund vorhanden ist und die Deckenunterseite wie Ziegel-Mauerwerk verputzt werden kann.

Ziegel-Einhängedecken

3.5.5 Decken aus Porenbeton
Die sichtbaren Fugen müssen nach Herstellerangaben behandelt werden. Die so entstehende Fläche besteht aus Porenbeton und muss putztechnisch wie großformatiges Mauerwerk aus Porenbeton behandelt werden.
4.1 Überblick

Der Aufbau eines Putzsystems richtet sich nach den Anforderungen an den Putz und nach der Beschaffenheit des Untergrundes. Der Außenputz prägt nicht nur das Aussehen eines Gebäudes, sondern übernimmt auch die Funktion des Witterungsschutzes. Er hält die Wände trocken und trägt damit wesentlich zum Wärmeschutz bei (durchfeuchtete Wände verlieren ihre wärmédämmenden Eigenschaften).

Mineralische Putzmörtel werden als Unterputz, als Armierungsputz und als Oberputz eingesetzt. Putze mit organischen Bindemitteln werden als Armierungsputz oder als Oberputz verwendet.

In den nachfolgenden Abschnitten wird auf die Auswahl der verschiedenen Putzsysteme in Abhängigkeit von den unterschiedlichen Putzgründen eingegangen.

Neben Hinweisen zur Prüfung und Beurteilung des Putzgrundes sind darin auch Hinweise zur richtigen Putzausführung enthalten.

Die Planung und Ausführung von Außenputzen ist in der DIN EN 13914-1 und ergänzend in der DIN 18550-1 geregelt.

Das CE-Zeichen

Mit dem CE-Zeichen und der Leistungserklärung deklariert der Hersteller die wesentlichen Merkmale des Produktes.

Näheres regeln die zugehörigen Produktnormen.

Beispiel für die CE-Kennzeichnung eines Edelputzmörtels nach DIN EN 998-1

Brandverhalten:	A1
Wasseraufnahme:	W1
Wasserdampfdurchlässigkeit:	μ ≤ 20
Haftzugfestigkeit:	≥ 0,08 N/mm² bei Bruchbild A, B oder C
Wärmeleitfähigkeit: (Tabellenwerte)	λ₁₀,dyng,dry,mat ≤ 0,39 W/(m·K) für P = 50 %
	λ₁₀,dyng,dry,mat ≤ 0,43 W/(m·K) für P = 90 %

EN 998-1

Putzmörtel für die Verwendung als Außen- und Innenputz für Wände, Decken, Pfeiler und Trennwände
4.2 Mineralische Putzmörtel

Putze auf Basis der Bindemittel Kalk und/oder Zement haben ein feinporiges, diffusionsoffenes Gefüge. Dadurch können mineralische Putze Feuchtigkeit aufnehmen und auch schnell wieder abgeben.

Mineralische Putzmörtel sind in der Regel nicht brennbar (Baustoffklasse A1 nach DIN 4102). Das Brandverhalten wird vom Hersteller in der Leistungserklärung und im CE-Kennzeichen deklariert.

Für die jeweiligen Anwendungsfälle werden mineralische Putzmörtel in verschiedenen Festigkeitsklassen und Rohdichten hergestellt. In DIN EN 998-1 sind die Anforderungskategorien für die Druckfestigkeit gestaffelt und erlauben eine anwendungsgerechte Einstufung der Produkte. Weitere wesentliche Anforderungen an Putzmörtel auf Außenbauteilen bestehen hinsichtlich kapillarer Wasseraufnahme und Wärmeleitfähigkeit, siehe Tabelle 2.

Tabelle 2: Anforderungskategorien für die Prismendruckfestigkeit, die kapillare Wasseraufnahme und die Wärmeleitfähigkeit von Putzmörteln nach der europäischen Putzmörtelnorm EN 998-1

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Kategorien</th>
<th>Anforderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druckfestigkeit (28 Tage)</td>
<td>CS I</td>
<td>0,4 - 2,5 N/mm²</td>
</tr>
<tr>
<td></td>
<td>CS II</td>
<td>1,5 - 5,0 N/mm²</td>
</tr>
<tr>
<td></td>
<td>CS III</td>
<td>3,5 - 7,5 N/mm²</td>
</tr>
<tr>
<td></td>
<td>CS IV</td>
<td>≥ 6,0 N/mm²</td>
</tr>
<tr>
<td>Kapillare Wasseraufnahme</td>
<td>W 0</td>
<td>Nicht festgelegt</td>
</tr>
<tr>
<td></td>
<td>W 1</td>
<td>c ≤ 0,40 kg/(m²·min⁰·⁵)</td>
</tr>
<tr>
<td></td>
<td>W 2</td>
<td>c ≤ 0,20 kg/(m²·min⁰·⁵)</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit</td>
<td>T 1</td>
<td>≤ 0,1 W/(m·K)</td>
</tr>
<tr>
<td></td>
<td>T 2</td>
<td>≤ 0,2 W/(m·K)</td>
</tr>
</tbody>
</table>

Rohdichten hergestellt. In DIN EN 998-1 sind die Anforderungskategorien für die Druckfestigkeit gestaffelt und erlauben eine anwendungsgerechte Einstufung der Produkte. Weitere wesentliche Anforderungen an Putzmörtel auf Außenbauteilen bestehen hinsichtlich kapillarer Wasseraufnahme und Wärmeleitfähigkeit, siehe Tabelle 2.
4.3 Putze mit organischen Bindemitteln

Putze mit organischen Bindemitteln werden gebrauchsfertig (pastös) in Eimern oder in speziellen Silos auf die Baustelle geliefert. Unterschieden werden:

- Dispersions-Silikatputz (Silikatputz), der als eigenschaftsbestimmende Bindemittel Kali-Wasserglas und Polymerdispersion enthält
- Dispersionsputz (Kunstharzputz), dessen eigenschaftsbestimmendes Bindemittel aus Polymerdispersion besteht
- Siliconharzputz, der als eigenschaftsbestimmende Bindemittel eine Siliconharzemulsion und Polymerdispersion enthält

Außen- und Innenputze mit organischen Bindemitteln sind in der DIN EN 15824 genormt und mit dem CE-Kennzeichen versehen.

4.4 Putzträger, Putzbewehrung/-armierung (Gewebeeinlage)

Während die Putzträger eine gewisse Eigensteifigkeit besitzen und den Putz tragen, haben Putzbewehrungen/-armierungen keine nennenswerte Eigensteifigkeit. Ihre Funktion besteht darin, Zugkräfte, wie sie z. B. infolge von Schwindvorgängen entstehen können, im Putz zu übernehmen bzw. zu verteilen. Putzbewehrungen/-armierungen sind Einlagen im Putz bzw. im Armierungsmörtel (siehe Abschnitt 4.9), z. B. aus Metall (Drahtgewebe), aus mineralischen Fasern (Glasfaser-gewebe) oder Kunststofffasern. Am häufigsten werden Glasfaserhelmen eingesetzt, die zur Erreichung der erforderlichen Alkalibeständigkeit und Verschiebebefestigkeit mit einer Appretur (Kunststoffbeschichtung) ausgerüstet sind.

Putzbewehrungen/-armierungen können je nach Auf­gabenstellung ganzflächig oder teilflächig eingesetzt werden.

4.5 Regenschutzwirkung von Außenputzen und Beschichtungen

DIN 4108-3 definiert drei Beanspruchungsgruppen: geringe, mittlere und starke Schlagregenbeanspruchung. Je nach Gruppe werden Anforderungen an den Wasseraufnahmekoeffizienten \(W_w \), an die wasserdampfdiffusionsäquivalente Luftschichtdicke \(s_d \) und an das Produkt der beiden Werte \(W_w \cdot s_d \) gestellt, siehe Tabelle 3. Darüber hinaus verweist DIN 4108-3 ausdrücklich auch auf DIN 18550-1, siehe Tabelle 4.

Daraus ergibt sich, dass die Vorgaben der DIN 4108-3 bezüglich der Kriterien für den Regenschutz auf zwei Arten erfüllt werden können:

1 Prüfung nach DIN EN ISO 15148

2 Prüfung nach DIN EN 998-1 bzw. DIN EN 15824

Wird die Wasseraufnahme nach den Vorgaben der europäischen Produktnormen DIN EN 998-1 bzw. DIN EN 15824 geprüft und deklariert, so müssen die
Anforderungen der DIN 18550-1 eingehalten werden, siehe Tabelle 4.

Der Nachweis, dass die Anforderungen an den Regenschutz eingehalten sind, kann somit nicht nur nach der in DIN 4108-3 beschriebenen Methode, sondern auch nach DIN EN 998-1 bzw. DIN EN 15824 erbracht werden.

In beiden Fällen gilt: Die Kriterien sind dann erfüllt, wenn mindestens eine Lage/Beschichtung im Außenputz bzw. Außenputzsystem die Anforderungen aus Tabelle 3 oder Tabelle 4 erfüllt.1)

1) Im Falle der vertraglichen Vereinbarung der VOB/C ATV DIN 18350 Putz und Stuckarbeiten sind die Kriterien nach Tabelle 3 einzuhalten − solange die ATV noch auf DIN V 18550 verweist (vergleiche Abschnitt 3.2.1 ATV DIN 18350 bzw. Abschnitt 7.4 Regenschutz der DIN V 18550). In diesem Fall kann auch durch besondere vertragliche Regelungen Tabelle 4 vereinbart werden.

4.6 Putzsysteme und typische Kennwerte

Der Aufbau eines Putzsystems richtet sich nach den Anforderungen an den Putz und nach der Beschaffenheit des Untergrundes.

Als Putzsystem werden die Lagen eines Putzes bezeichnet, die in ihrer Gesamtheit und in Wechselwirkung mit dem Putzgrund die Anforderungen an den Putz erfüllen.

Eine Putzlage wird in einem Arbeitsgang durch eine oder mehrere Schichten des gleichen Mörtels (nass in nass) hergestellt. Untere Lagen werden Unterputz, die oberste Lage wird Oberputz genannt.

Tabelle 3: Kriterien für den Regenschutz von Putzen und Beschichtungen nach DIN 4108-3 bei Prüfung nach DIN EN ISO 15148 a)

<table>
<thead>
<tr>
<th>Kriterien für den Regenschutz</th>
<th>Wasseraufnahme-koeffizient W_w kg/(m²·h⁰⁵)</th>
<th>Wasserdampfdiffusionsäquivalente Luftschichtdicke s_d m</th>
<th>Produkt $W_w \cdot s_d$ kg/(m·h⁰⁵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wasserabweisend</td>
<td>$W_w \leq 0,5$</td>
<td>$s_d \leq 2,0$</td>
<td>$W_w \cdot s_d \leq 0,2$</td>
</tr>
</tbody>
</table>

a) Siehe hierzu auch DIN 18550

Tabelle 4: Anforderungen an den Regenschutz von Außenputzen nach DIN 18550-1

<table>
<thead>
<tr>
<th>Beanspruchungsgruppe nach DIN 4108-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>I geringe Schlagregenbeanspruchung</td>
</tr>
<tr>
<td>II mittlere Schlagregenbeanspruchung</td>
</tr>
<tr>
<td>III starke Schlagregenbeanspruchung</td>
</tr>
</tbody>
</table>

Bezeichnung nach DIN 4108-3

| Außenputz ohne besondere Anforderung | mindestens wasserhemmender Außenputz | mindestens wasserabweisender Außenputz |

Mindestens zu erfüllende Anforderungskategorien für die Wasseraufnahme der Putze a)

| Putz nach DIN EN 998-1 | W0, W1, W2 | W1, W2 | W2 |
| Putz nach DIN EN 15824 | W_w, W_j, W_3 | W_w, W_j, W_3 | W_j, W_3 |

a) Die Kriterien gelten dann als erfüllt, wenn mindestens eine Putzlage des Außenputzsystems die Anforderungen erfüllt.
Die Eigenschaften der verschiedenen Putzlagen eines Systems sollen so aufeinander abgestimmt sein, dass die zwischen den Putzlagen und zwischen Putzgrund und Putz auftretenden Spannungen (z. B. infolge Schwinden oder Temperaturdehnungen) aufgenommen werden können. Diese Forderung kann bei Putzen mit mineralischen Bindemitteln im Allgemeinen dann als erfüllt angesehen werden, wenn die Festigkeit des Oberputzes geringer als die Festigkeit des Unterputzes ist oder beide Putzlagen gleich fest sind.

Dies gilt jedoch nicht für Wärmedämmputz oder Leichtunterputz, wenn auf diese ein Armierungsputz mit Gewebeeinlage aufgebracht wird. Dünnlagige geriebene Oberputze, die auf Leichtunterputze aufgebracht werden, können auch fester als der Unterputz sein.

In Tabelle 5 sind die typischen Kennwerte für übliche Außenputze (Unterputze) zusammengefasst. Die Putze lassen sich entsprechend ihrer Trockenrohdichte in Bereiche einordnen, die im Bild rechts oben dargestellt sind.

Tabelle 5: Typische Kennwerte üblicher Außenputze (Unterputze); Sockel-Leichtputz siehe Tabelle 6

<table>
<thead>
<tr>
<th>Putztyp</th>
<th>Normalputz</th>
<th>Leichtputz</th>
<th>Wärmedämmputz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CS II / CS III</td>
<td>CS II</td>
<td>CS I / CS II</td>
</tr>
<tr>
<td>Druckfestigkeitsklasse</td>
<td>3 – 7</td>
<td>2,5 – 5</td>
<td>1 – 3</td>
</tr>
<tr>
<td>nach DIN EN 998-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prismendruckfestigkeit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in N/mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trockenrohdichte (Prisma)</td>
<td>1 300 – 1 800</td>
<td>1 000 – 1 300</td>
<td>600 – 1 100</td>
</tr>
<tr>
<td>in kg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastizitätsmodul</td>
<td>3 000 – 7 000</td>
<td>2 500 – 5 000</td>
<td>1 000 – 3 000</td>
</tr>
<tr>
<td>in N/mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[a)\] Leichtputze vom Typ II werden auch unter der Bezeichnung „Faserleichtputz“, „Ultraleichtputz“, „Superleichtputz“ usw. angeboten.

4.7 Normalputz

Als Normalputz (Abkürzung gemäß EN 998-1: „GP“; englisch general purpose rendering/plastering mortar) wird nach DIN EN 998-1 ein Putzmörtel ohne besondere Eigenschaften bezeichnet. Die Trockenrohdichte ist > 1 300 kg/m³.
4.8 Leichtputzsysteme

Als Leichtputz (Abkürzung gemäß EN 998-1: „LW“; englisch lightweight rendering/plastering mortar) wird nach DIN EN 998-1 ein Putzmörtel mit besonderen Eigenschaften bezeichnet. Die Trockenrohdichte ist \(\leq 1300 \text{ kg/m}^3 \).

Leichtputz Typ I

Für das Verputzen von wärmédämmenden Wandbaustoffen haben sich Leichtputze mit Trockenrohdichten von 1000 bis 1300 kg/m³ bewährt. Um sie von noch leichteren Putzen zu unterscheiden, werden sie als Leichtputz Typ I (siehe Tabelle 5) bezeichnet.

Leichtputz Typ II

Parallel zur Entwicklung extrem leichter Wandbaustoffe (Leichthochlochziegel, Porenbeton oder Leichtbeton mit einer Wärmeleitfähigkeit von 0,055 bis 0,14 W/m·K) wurden als „Superleichtputz“, „Ultraleichtputz“, „Faserleichtputz“ oder ähnlich bezeichnete Leichtputze mit einer Trockenrohdichte < 1100 kg/m³ entwickelt.

Leichtputz Typ II sind hinsichtlich ihrer Elastizität und Schwindverformung optimiert. Untersuchungen haben gezeigt, dass die genannten Putze ein günstiges Verhältnis E-Modul (Putz) / E-Modul (Untergrund) deutlich < 1 besitzen und damit optimal auf hochwärmédämmende Untergründe abgestimmt sind.

Leichtputzsysteme aus Unterputz, Armierungsputz und Oberputz

Bei höherer Beanspruchung des Putzsystems, wie z. B.
- besonderer Exposition der Fassade,
- Verwendung besonders beanspruchter Oberputze (siehe Abschnitt 5.3),
- erhöhter Feuchtebelastung (auch aus dem Untergrund),
- erheblicher Unregelmäßigkeiten im Putzgrund oder
- weiterer im Abschnitt 5 genannter Einflüsse,

wird das Aufbringen eines Armierungsputzes mit vollflächiger Gewebeeinlage auf den Unterputz empfohlen.

Mit dieser Technik wird der Oberputz von Spannungen aus dem Untergrund (d. h. aus Wandbaustoff und Unterputz) „entkoppelt“.

Für Armierungsputzte werden polymervergütete Mörtel (Armierungsmörtel) verwendet, die eine Kraftübertragung auf das vollflächig eingelegte Glasgittergewebe (Armierungsgewebe) sicherstellen.

Bei Verwendung eines Putzes mit organischem Bindefall als Oberputz muss der mineralische Unterputz der Druckfestigkeitskategorie CS II, CS III oder CS IV entsprechen und die deklarierte Druckfestigkeit muss mindestens 2 N/mm² betragen oder die Eignung des Unterputzes muss vom Hersteller bestätigt sein.

4.9 Armierungsputz

Als Armierungsputz bezeichnet man eine Putzlage, die aus einem polymervergüteten Armierungsmörtel mit einem vollflächlich eingebetteten Armierungsgewebe (siehe Abschnitt 4.4) besteht. Ein Armierungsputz mit Gewebeeinlage ist eine weitaus effektivere Maßnahme zur Verhinderung von Rissen als das Einbetten eines Armierungsgewebes in einen (Leicht-)Unterputz.

Mit einem Armierungsputz mit Gewebeeinlage auf einem Leichtputz wird eine weitgehende Entkopplung der oberen Putzschichten vom Untergrund erreicht. Dadurch können auftretende Spannungen im Putzsystem aufgefangen und verteilt werden.
Bei mineralischen Baustoffen ist die Zugfestigkeit deutlich geringer als die Druckfestigkeit. Die Zugfestigkeit beträgt in der Regel nur rd. 1/10 der Druckfestigkeit; d. h. ein mineralischer Putz mit einer Druckfestigkeit von 5 N/mm² weist lediglich eine Zugfestigkeit von 0,5 N/mm² auf. Das Überschreiten der Zugfestigkeit führt zu Rissen.

Mit der Einbettung eines alkaliresistenten Armierungs­gewebes (aus Glasfasern) wird die Zugfestigkeit des Putzsystems deutlich erhöht, wenn die auf den Putz einwirkenden Zugspannungen möglichst vollständig auf das Armierungsgewebe übertragen werden können. Dazu ist ein guter Verbund zwischen Putz und Armierungsgewebe notwendig. Dieser Verbund kann einerseits dadurch erreicht werden, dass das Gewebe in einer dichten Mör­telmatrix eingebettet ist, und andererseits dadurch, dass in dem Putz Polymeranteile enthalten sind, die eine sehr gute Haftung zum Gewebe gewährleisten.

Teilflächenarmierung

In Fällen, in denen eine Armierung des Putzsystems nicht über eine gesamte Fassadenfläche, sondern lediglich in kleinen Teilflächen erfolgen soll, z. B. bei Rollladenkästen, Fensterecken, Deckenrändern und dergleichen, kommen in der Praxis zwei Varianten zur Anwendung 2). Beide Varianten eignen sich nur, wenn es sich – bezogen auf die gesamte Fassadenfläche – nach Anzahl und Größe um wenige bzw. geringe Flächenanteile handelt. Der Auftrag­geber sollte vor Ausführung der Arbeiten auf die mög­lichen Auswirkungen einer Teilflächenarmierung (s. u.) aufmerksam gemacht werden und sein Einverständnis für eine derartige Ausführung erteilen.

Ein vollflächiger Armierungsputz ist der Teilflächenarmie­ rung immer vorzuziehen.

Teilflächenarmierung bei dicklagigen Oberputzen (z. B. Kratzputz) und Putzen mit einer Korngröße über 3 mm

Teilflächenarmierung bei dünnlagigen Oberputzen mit einer Korngröße von 3 mm und kleiner

Mit dieser Anordnung (Armierungsputz direkt auf dem Untergrund) werden aus unterschiedlichen Unter­grundeigenschaften herrührende Spannungen auf eine größere Teilfläche verteilt und so das Risiko einzelner Risse vermindert. Spannungen, die aus äußeren Einflüs­sen herrühren, z. B. aus der hygrothermischen Belastung des Putzsystems, lassen sich mit dieser Anordnung nicht verteilen.
4.10 Oberputze

Mineralische Edelputze
Für die Oberflächengestaltung werden als Oberputze häufig mineralische Edelputze (Abkürzung gem. EN 998-1: „CR“; englisch coloured rendering mortar) verwendet. Farbige Edelputze enthalten neben ausgewählten, Struktur gebenden Spezialkörnungen UV-beständige Farbpigmente.
Falls herstellerseitig ein vorheriger Grundanstrich empfohlen wird, muss dieser auf den jeweiligen Untergrund und den Oberputz gleichermaßen abgestimmt sein.
Es wird zwischen dünnsschichtigen und dickschichtigen Edelputzen unterschieden.
Dünnsschichtige Edelputze sind in Korngröße aufgetragene und strukturierte (geriebene) Putze, z. B.:
- Rillenputz
- Reibeputz
- Münchner Rauputz
- Scheibenputz
Die Schichtstärke ergibt sich aus der Korngröße des Strukturkorns (meist 2 bis 5 mm).
Dickschichtige Edelputze sind Putze, deren Schichtdicke größer als die maximale Korngröße ist. Dickschichtputze sind z. B. Kratzputze.
Kellenwurfputz erhält seine Struktur durch das Anwerfen eines Putzmörtels mit grober Gesteinskörnung.
Kratzputz entsteht dadurch, dass die verputzte Fläche nach dem Anhärten (i. d. R. einen Tag nach dem Aufbringen) mit einem sogenannten „Kratz-Igel“ bearbeitet wird und dadurch ihre raue, gleichmäßig strukturierte Oberfläche und ihr edles Aussehen erhält. Dickschichtige Kratzputze stellen in vielen Punkten die optimale Lösung dar, da bei ihnen alle Vorteile mineralischer Edelputze zum Tragen kommen:
- Natürliche, mineralische Oberfläche, da ein Egalisationsanstrich nicht erforderlich ist.
- Das größere Wärmespeichervermögen der dickeren Putzschicht verringert beim nächtlichen Auskühlen die Kondenswasserbildung an der Oberfläche; dadurch wird der Gefahr der unschönen Bildung von Algen und Pilzen auf natürliche Weise entgegengewirkt.
Vereinzelt auftretende Haarrisse (< 0,2 mm) sind bei mineralischen Putzsystemen technisch unkritisch. Optisch sind sie umso auffälliger, je feiner die Putzoberfläche ist. Diesbezüglich sind rauere Oberflächenstrukturen weniger empfindlich.

Putze mit organischen Bindemitteln
Putze mit organischen Bindemitteln werden als Oberputze auf mineralischen Untergründen oder mineralischen Unterputzen eingesetzt. Falls herstellerseitig ein vorheriger Grundanstrich empfohlen wird, muss dieser auf den jeweiligen Untergrund und den Oberputz gleichermaßen abgestimmt sein.
Ein geeigneter mineralischer Unterputz muss der Druckfestigkeitskategorie CS II, CS III oder CS IV entsprechen und die deklarierte Druckfestigkeit muss mindestens 2 N/mm² betragen oder die Eignung des Unterputzes muss vom Hersteller bestätigt sein.
Nach Art der Effekte unterscheidet man bei Putzen mit organischen Bindemitteln folgende Putzstrukturen, die sich damit herstellen lassen:
- Kratzputz-Struktur (kratzputzähnliches Aussehen)
- Reibe-/Rillenputz-Struktur
- Spritzputz-Struktur
- Rollputz-Struktur
- Buntsteinputz
- Modellierputz
Die Schichtstärke ergibt sich aus der Korngröße des Strukturkorns (meist 2 bis 5 mm).
4.11 Wärmedämmputzsysteme

Eigenschaften

Putze mit einem erhöhten Anteil an leichten Zusätzen – vorwiegend Kugelchen aus expandiertem Polystyrol (EPS) – werden als Wärmedämmputze (Abkürzung: T) bezeichnet, wenn der Rechenwert der Wärmeleitfähigkeit ≤ 0,2 W/(m·K) beträgt. Diese Anforderung gilt als erfüllt, wenn die Trockenrohdichte ≤ 600 kg/m³ ist. Gemäß DIN EN 998-1 werden die Wärmeleitfähigkeitsgruppen

- T 1 ≤ 0,1 W/(m·K) und
- T 2 ≤ 0,2 W/(m·K)

unterschieden. Nach DIN V 18550 ergeben sich als Bemessungswerte für

- T 1 λ_B = 0,12 W/(m·K) und
- T 2 λ_B = 0,24 W/(m·K)

In Deutschland werden überwiegend Wärmedämmputze nach der bauaufsichtlichen Zulassung Z-23.13-1606 mit einem Bemessungswert der Wärmeleitfähigkeit von 0,06 bzw. 0,07 W/(m·K) verwendet.

Wärmedämmputzsystem

Der Unterputz aus Wärmedämmputz muss mindestens 20 mm und soll in der Regel höchstens 100 mm dick sein. Die Druckfestigkeit entspricht Festigkeitsklasse CS I (0,4 bis 2,5 N/mm²). Um den weichen Dämmputz vor mechanischer Beanspruchung und Durchfeuchtung zu schützen, wird auf den wasserhemmenden Unterputz ein wasserabweisender Oberputz (Druckfestigkeit 0,8 bis 3,0 N/mm²) aufgetragen. Empfehlenswert ist als Zwischenlage ein Armierungssputz (Schichtdicke: 4 bis 6 mm) mit Gewebeeinlage (auch als „Ausgleichsputz“ bezeichnet). Die Gesamtschichtdicke von Oberputz (mit/ohne Armierungsputz) beträgt 6 bis 12 mm, im Mittel 8 mm.

4.12 Sockelputze

Im spritzwassergefährdeten Bereich wird Außensockelputz nach Tabelle 6 verwendet. Außensockelputz muss ausreichend fest, wasserabweisend und widerstandsfähig gegen Feuchte und Frost sein. Bewährt haben sich Putze der Festigkeitsklasse CS IV nach DIN EN 998-1. Auf leichteren und weicheren Wandbaustoffen (Steine der Festigkeitsklasse ≤ 8) sollen jedoch Außensockelputze (Unterputze) der Kategorie CS III nach DIN EN 998-1 (Druckfestigkeit 3,5 bis 7,5 N/mm²) mit hydraulischen Bindemitteln aufgebracht werden. Mineralische Oberputze im Sockelbereich sollen eine Druckfestigkeit von 2,5 N/mm² nicht unterschreiten. Bei Außensockelputzen auf Dämmplatten muss der Putzgrund mit vergüten mineralischen Haftmörteln vorbehandelt werden.

<table>
<thead>
<tr>
<th>Putztyp</th>
<th>(Normal-) Sockelputz</th>
<th>Leichtputz für Sockel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druckfestigkeitsklasse nach DIN EN 998-1</td>
<td>CS IV</td>
<td>CS III</td>
</tr>
<tr>
<td>Prismendruckfestigkeit in N/mm²</td>
<td>> 6</td>
<td>3,5 – 7,5</td>
</tr>
<tr>
<td>Trockenrohdichte (Prisma) in kg/m³</td>
<td>> 1300</td>
<td>1100 – 1300</td>
</tr>
<tr>
<td>Elastizitätsmodul in N/mm²</td>
<td>> 6000</td>
<td>3000 – 7500</td>
</tr>
</tbody>
</table>
4.13 Sanierputze und Sanierputzsysteme nach WTA

Sanierputze (Abkürzung gemäß EN 998-1: „R“; englisch renovation mortar) sind poröse Spezialputze (Porosität > 40 Vol.-%) mit sehr hoher Wasserdampfdiffusionsfähigkeit und vermindert der kapillarer Leitfähigkeit. Sie werden zum Verputzen von feuchtem und/oder salzbelastetem Mauerwerk eingesetzt.

Mauerwerk mit schwachem Salzbelastung kann mit Sanierputz einlagig oder mehrlagig (Mindestschichtdicke 20 mm je Lage 10 mm) verputzt werden. Bei hohen Salzgehalten empfiehlt sich die Verwendung eines Sanierputzsystems (Spritzbewurf, Porengundputz, Sanierputz). Der Porengundputz dient auch zum Ausgleichen von Unebenheiten. Saugfähigkeit und Porosität sind höher als beim Sanierputz, so dass bereits ein großer Teil des Salzgehaltes im Porengundputz gespeichert wird. Die Gesamtdicke aus Porengundputz-WTA und Sanierputz-WTA beträgt mindestens 25 mm, wobei die Dicke des Sanierputzes auf 15 mm vermindert werden darf.

Nach ausreichender Trocknung (Richtwert ein Tag pro mm Auftragsstärke) wird der Sanierputz mit einem Oberputz beschichtet und/oder gestrichen. Die Deckschichten dürfen die Wasserdampfdiffusion aus dem Sanierputz nicht beeinträchtigen.

4.14 Kellerwandaußenputze

Kellerwandaußenputze als Träger von Beschichtungen müssen aus Mörteln der Druckfestigkeitskategorie CS IV nach DIN EN 998-1 mit hydraulischen Bindemitteln hergestellt werden.

Bei Mauerwerk aus Steinen der Druckfestigkeitsklassen ≤ 8 sollte jedoch die Mindestdruckfestigkeit für CS IV von 6 N/mm² nicht wesentlich überschritten werden.

Kellerwandaußenputz im erdberührten Bereich muss nach DIN 18195 zusätzlich abgedichtet werden.

Schnell abbindende mineralische Putze

Schnell abbindende Putzsysteme beschleunigen in der Regel nur das Erstarrungsverhalten, nicht aber das Austrocknungsverhalten. Die allgemein anerkannten Standzeiten von einem Tag pro mm Putzstärke müssen auch bei derartigen Putzsystemen eingehalten werden, bevor der nachfolgende Oberputz aufgetragen werden kann. Eine Abweichung ist möglich, wenn vom Putzhersteller kürzere Standzeiten ausdrücklich zugelassen werden.
Für die Auswahl eines geeigneten Putzsystems müssen verschiedene Parameter betrachtet werden. Erst unter Berücksichtigung aller Randbedingungen, wie sie im Folgenden dargestellt sind, kann die Auswahl des geeigneten Putzsystems erfolgen.

5.1 Untergrund

5.1.1 Steintyp

Um Mauersteine zu charakterisieren, reicht es nicht aus, alleine den Bemessungswert ihrer Wärmeleitfähigkeit (λ) zu betrachten. Insbesondere bei Ziegeln muss auch die Rohdichteklasse berücksichtigt werden.

5.1.2 Qualität des Putzgrundes / Ausführung des Mauerwerks

Überbindemaß

Das Mindest-Überbindemaß (siehe Abschnitt 3.1.1) muss eingehalten werden. Ist dies in größerem Umfang nicht der Fall, so ist vor dem Verputzen eine statische Überprüfung des Gebäudes erforderlich. In putztechnischer Hinsicht resultiert aus einem in größerem Umfang nicht eingehaltenen Mindest-Überbindemaß eine erhöhte Beanspruchung des Putzsystems.

Offene Stoßfugen, Mörteltaschen oder Fehlstellen

Offene Stoßfugen, die größer als 5 mm sind, müssen ausreichend lange vor dem Verputzen mit Leichtmörtel oder anderem geeignetem Ausbesserungsmörtel geschlossen werden. Das Gleiche gilt für Mörteltaschen und Verzahnungen (Nuttiefe > 8 mm) an Wandenden und Mauer­ecken sowie Fehlstellen in der Wand. Als Standzeit vor dem Verputzen gilt: ein Tag je mm Dicke (siehe Tabelle 8).

Gerissene Steine

Feuchter Putzgrund

Bei nur oberflächlich feuchtem Putzgrund muss eine Standzeit bis zum Abtrocknen der Oberfläche eingehalten werden.

Ein Putzgrund ist ausreichend trocken, wenn oberflächennah (bis etwa 30 mm Tiefe) die in DIN 4108-4 bzw. DIN EN 12524 für diesen Baustoff genannte Ausgleichsfeuchte annähernd erreicht ist.

In jedem Fall soll die Standzeit des Unterputes auf 2 bis 3 Tage pro mm Putzdicke erhöht werden.
Inhomogener Putzgrund

Wichtige Voraussetzung für schadensfreies Verputzen ist ein homogener Putzgrund. Dieser wird bei Mauerwerk gewährleistet, wenn beim Einbau von Rollladenkästen, Deckenranddämmungen usw. die von den Mauersteinherstellern angebotenen Ergänzungsprodukte verwendet werden.

Werden in zu verputzende Flächen Bauteile mit abweichenden Oberflächen eingebaut, so können aus den unterschiedlichen Verformungseigenschaften der Untergrundmaterialien Spannungen herrühren, durch die das Putzsystem höher beansprucht wird. Deshalb müssen diese Bereiche entsprechend den Verarbeitungshinweisen der Hersteller vorbereitet werden. Um die Beanspruchung des Putzsystems gering zu halten, hat sich in diesen Bereichen z. B. der zusätzliche Auftrag eines Armierungsputzes mit vollflächiger Gewebeeinlage auf den Unterputz bewährt.

Hinweis

Durch die Verwendung der von den Mauersteinherstellern angebotenen Ergänzungsprodukte (z. B. Rollladenkästen, Deckenranddämmungen usw.) entsteht ein homogener Putzgrund.
5.2 Exposition / Lage des Gebäudes

Bei stark der Witterung ausgesetzten Gebäuden, z. B. in freien Hochlagen, ist die Belastung des Putzsystems wesentlich höher als in geschützten Lagen. Dazu kommt, dass bei solchen Gebäuden eine erhöhte Feuchtigkeit im Rohbau-Mauerwerk vorliegen kann. Ein ausreichend bemessener Dachüberstand kann ggf. einen ausreichenden Witterungsschutz bieten.

Die Schlagregenbelastung eines Gebäudes ist von seiner Höhe, von der geographischen Region sowie vom tatsächlichen Standort in dieser Region abhängig.

Die DIN 4108-3 teilt Deutschland hinsichtlich der Schlagregenbeanspruchung in drei Beanspruchungsgruppen ein: Gruppe I geringe, Gruppe II mittlere und Gruppe III starke Schlagregenbeanspruchung.

Mit der Höhe des Gebäudes nimmt die Schlagregenbelastung exponentiell zu. Das bedeutet, auch in Gebieten mit eigentümlich geringer Belastung kann man bei Gebäudehöhen von über 10 m davon ausgehen, dass sie stark beregnet werden.

Pauschal kann keine Aussage darüber getroffen werden, ob eine hohe oder niedrige Schlagregenbelastung bzw. eine exponierte Lage vorliegt. Dies muss vor Ort für das einzelne Gebäude beurteilt werden. Dabei hilft es sicherlich, die Fassaden benachbarter Gebäude zu betrachten, insbesondere die Westfassaden.

Bei starker Bewitterung hat es sich bewährt, einen zusätzlichen Armierungsputz mit Gewebeeinlage aufzutragen.

5.3 Gestaltung / Optik

5.3.1 Art des Oberputzes

5.3.2 Farbton des Oberputzes

5.4 Auswahl des Putzsystems

Das Putzsystem muss auf die mechanischen und bauphysikalischen Eigenschaften des Untergrunds abgestimmt sein. Hochwärmedämmendes Mauerwerk muss anders verputzt werden als Flächen aus Kalksandstein oder Normalbeton.

Flächen mit vorhandenem Putz können problemlos neu verputzt werden, wenn dieser fest, sauber und tragfähig ist. Sind im vorhandenen Putz Risse, müssen besondere Maßnahmen ergriffen werden, z.B. das Aufbringen eines Armierungsputzes mit vollflächiger Gewebeeinlage (siehe WTA-Merkblatt zur Beurteilung und Instandsetzung gerissener Putze an Fassaden [5]).

Die folgende Erläuterung soll zeigen, welche Putze sich für die verschiedenen Untergründe eignen bzw. welche Putze besonders empfohlen werden können.

Ausführungsstufen

AUSGEHENDE VON DER GRÜNDLÄSSTZUCHT EINSTUFTUNG DES MAUERWERKS MÜSSEN DIE PARAMETER NACH ABSCHNITT 5.1 BIS 5.3 BEWERTET UND GEWICHTET WERDEN. IN DER TABELLE 7 SIND DIE GEEIGNETEREN PUTZSYSTEME (AUßENPUTZ) FÜR DIE UNTERSCHIEDLICHEN UNTERGRÜNDE ZUSAMMENGEFAST.

BEI DER AUSFÜHRUNG DER PUTZARBEITEN SIND GRÜNDLÄSSTZICH VERSCHIEDENE STUFEN BEZÜGLICH DER AUSFÜHRUNGSSICHERHEIT MÖGLICH, DIE IN DER TABELLE 7 MIT “BEDINGT GEEIGNET” (✔), “GEEIGNET” (✔✔) UND “BESONDERES GEEIGNET” (✔✔✔) BEZEICHNET SIND. UNGEEIGNETE AUSFÜHRUNGSVARIANTEN SIND MIT “–” GEEKENNZEICHNET.

TSR-Wert

Während der Hellbezugswert nur den Farbeindruck im sichtbaren Bereich widerspiegelt und damit nur ca. 39 % des Energieeintrages des Sonnenlichtes darstellt, bezieht sich der TSR-Wert auf die Energieeinstrahlung im gesamten Sonnenlichtspektrum vom ultravioletten bis zum infraroten Bereich.

Der TSR-Wert trägt somit umfassender zur Beurteilung der physikalischen Belastung des Putzaufbaus infolge solarer Einstrahlung bei als der HBW. Einen Bezug des TSR-Wertes zum HBW gibt das IWM-Merkblatt „Total Solar Reflectance“ [4].
Tabelle 7: Eignung mineralischer Außenputze (Unterputze) auf verschiedenen Untergründen

Eignung mineralischer Außenputze (Unterputze) auf verschiedenen Untergründen

Teil A

<table>
<thead>
<tr>
<th>Untergrund</th>
<th>Normalputz</th>
<th>Leichtputz</th>
<th>Dämmputz</th>
<th>Zusatzmaßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochlochziegel (Rohdichteklasse ≥ 0,8)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Zur Erhöhung der Ausführungssicherheit (z. B. Erhöhung der Zugfestigkeit, verbesserter Witterungsschutz, weitere Verminderung des Rissrisikos) ist das zusätzliche Aufbringen eines Armierungsputzes mit vollflächiger Gewebeeinlage auf den Unterputz geeignet. Dabei handelt es sich um eine Zusatzmaßnahme, die gesondert zu vereinbaren ist.</td>
</tr>
<tr>
<td>Leichtlochziegel mit Rohdichteklasse < 0,8</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Kalksandstein</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Porenbetonsteine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wärmeleitfähigkeit $\lambda_k > 0,11$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wärmeleitfähigkeit $\lambda_k \leq 0,11$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wärmeleitfähigkeit $\lambda_k \leq 0,08$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauerwerk aus Leichtbetonsteinen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wärmeleitfähigkeit λ_w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>monolithisch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 0,18</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>0,14 ... 0,18</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>< 0,14</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>unfüllt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mit Dämmstofffüllung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. d. R. < 0,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haufwerksporige Wandelemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gefügedichte Wandelemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rohdichteklasse ≥ 1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rohdichteklasse < 1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalbeton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teil B

Teil B der Tabelle gilt für Putzflächen, bei denen das Putzsystem einer erhöhten Beanspruchung ausgesetzt ist, z. B. bei

- besonderer Exposition der Fassade
- Verwendung besonders beanspruchter Oberputze (siehe Abschnitt 5.3)
- erhöhter Feuchtebelastung
- erheblichen Unregelmäßigkeiten im Putzgrund
- erhöhter Restfeuchte des Mauerwerks

oder anderen in Abschnitt 5 genannten Einflüssen.

Putztechnische Maßnahme

1) Leichtputze vom Typ II werden auch unter den Bezeichnungen „Faserleichtputz“, „Ultradeichtputz“, „Superleichtputz“ o. Ä. angeboten.
2) Bei Rohdichteklassen ≥ 1,2, z. B. im Gewerbebau, ist Normalputz geeignet (✔✔).
3) geeignet, wenn Empfehlung des Putzherstellers vorliegt

- nicht geeignet
- bedingt geeignet
- ✔ geeignet
- ✔ ✔ besonders geeignet

6 Außenputz: Prüfung und Beurteilung des Putzgrundes

6.1 Prüfung des Untergrundes

Grundsätzlich ist der Putzgrund vor Auftrag des Putzes vom ausführenden Fachunternehmer zu prüfen, damit z. B. eine ausreichende Haftung des Putzes erreicht werden kann. Die generelle Prüfungsanforderung ist in den Allgemeinen Technischen Vertragsbedingungen (ATV) Abschnitt 3.1.1 DIN 18350 Putz- und Stuckarbeiten VOB/C festgelegt. Dort ist Folgendes formuliert:

„3.1.1 Der Auftragnehmer hat bei seiner Prüfung Bedenken (siehe § 4 Nr. 3 VOB/B) insbesondere geltend zu machen bei

- ungeeigneter Beschaffenheit des Untergrundes, z. B. Ausblühungen, zu glatte Flächen, ungleich saugende Flächen, gefrorene Flächen, verschiedenartige Stoffe des Untergrundes,
- größeren Unebenheiten des Untergrundes als nach DIN 18202 zulässig (Hinweis: Bei Verwendung von Dünnlagenputzen gelten erhöhte Anforderungen an die Ebenheit des Untergrunds, siehe Abschnitt 8.4),
- zu hoher Baufeuchtigkeit,
- ungeeigneten klimatischen Bedingungen,
- ungenügenden Verankerungs- und Befestigungsmöglichkeiten,
- fehlenden Höhenbezugspunkten je Geschoss."

Der Fachunternehmer muss daher den Untergrund zunächst prüfen, um feststellen zu können, ob es ggf. gegen die Güte der vom Auftraggeber gelieferten Stoffe oder Bauteile, gegen die vorgesehene Art der Ausführung oder gegen die Leistungen anderer Unternehmer schriftlich beim Auftraggeber Bedenken angemeldet hat.

Die folgenden Prüfmethoden für Untergrund und Umgebung können als gewerkeüblich angesehen werden:

- Augenscheinprüfung insbesondere auf anhaftende Fremdstoffe (Schmutz, Ausblühungen, Ruß, Mörtelspritzer, Betonnasen und dergleichen), lockere und mürbe Teile, anhaftende Kalkausscheidungen;
- Wischprobe mit der flachen Hand, um festzustellen, ob Staub und Schmutz anhaften oder der Untergrund kreidet;
- Kratzprobe mittels eines harten Gegenstandes, um festzustellen, ob Teile des Untergrunds abplatzen, abblättern oder absanden;
- Benetzungsprobe durch Annässen mittels einer Bürste an mehreren Stellen, um festzustellen, ob Reste von Schalungstrennmitteln vorhanden sind oder der Untergrund nur unzureichend saugt, z. B. bei noch feuchtem Beton oder dichter Sinterhaut;
- Temperaturmessung (Lufttemperatur, Temperatur des Putzgrundes).

Sollten nach der gewerkeüblichen Prüfung noch Zweifel am Feuchtezustand des Untergrunds bestehen, ist der Feuchtegehalt zusätzlich zu prüfen. Bei dieser Prüfung handelt es sich im Sinne der o. a. VOB/C um
Prüfung der Tragfähigkeit von Bestandsputen und/oder Beschichtungen

Zur Prüfung der Tragfähigkeit insbesondere von Bestandsputen und/oder Beschichtungen ist die sogenannte Abreißprobe eine aussagekräftige und praxisnahe Methode.

Dazu werden an verschiedenen Stellen des zu prüfenden Untergrundes Probeflächen angelegt. Ein ca. 40 cm breites und ca. 80 cm langes Armierungsgewebe wird mit der oberen Hälfte in einen ca. 4-6 mm dicken Klebe-Armierungsmörtel in etwa mittig eingebettet. Sinnvoll ist es, dafür den gleichen Mörtel zu verwenden, der für die spätere Überarbeitung vorgesehen ist.

Wenn nicht sicher ist, dass z. B. eine Beschichtung verseifungsstabil ist, sollte die gesamte Probefläche während der Erhärtungs- bzw. Standzeit mit einer Folie abgeklebt werden, so dass möglichst lange Feuchtigkeit auf den zu prüfenden Untergrund einwirken kann und nicht nach außen abtrocknet.

Die notwendigen Maßnahmen zur Beseitigung ungeeigneter Untergründe sind besondere Maßnahmen. Der Auftraggeber muss die vom Auftragnehmer gemeldeten Bedenken prüfen und dann eigenverantwortlich entscheiden, welche Maßnahmen zu treffen sind.

Unterbreitet der Auftragnehmer dem Auftraggeber Vorschläge, durch die seine Bedenken ausgeräumt werden könnten, so bleibt er dafür verantwortlich, dass sein Vorschlag oder seine Empfehlung geeignet ist.

Ein Grund für mögliche spätere Putzschäden ist Feuchtigkeit, die während der Bauphase, z. B. durch mangelhafte Ableitung von Wasser auf den Mauerkrönen oder Decken, eingetragen wird. Dies ist vom Auftragnehmer, soweit gewerkeüblich möglich (siehe oben), ebenfalls zu prüfen.

6.2 Maßtoleranzen nach DIN 18202

Die DIN 18202 geht für den Bereich Putz auf die Prüfung von Winkel- und Ebenheitsabweichungen ein. Dabei können dieser Norm folgende Grundsätze entnommen werden:

Toleranzen dienen zur Begrenzung der Abweichungen von den Nennmaßen der Größe, Gestalt und Lage von Bauwerken und Bauteilen.

Erhöhte Anforderungen

Wegen erhöhten Anforderungen an die Ebenheit von Flächen gestellt, so ist dies vom Planer im Leistungsverzeichnis auszuschreiben und vertraglich besonders zu vereinbaren. Dies kann u. a. der Fall sein, wenn – z. B. aufgrund von speziellen Beleuchtungssituationen – besondere optische Anforderungen gestellt werden.
7 Außenputz: Hinweise zur Putzausführung

7.1 Berücksichtigung der Witterungseinflüsse

Es muss sichergestellt sein, dass die Luft- und Bauteiltemperatur nicht unter +5 °C liegt bzw. bis zum ausreichenden Erhärten des Putzes nicht darunter absinkt. Besonders bei Dispersions-Silikatputzen (Silikatputzen) werden von den Herstellern auch höhere Mindesttemperaturen, z. B. +8 °C, gefordert.

Darüber hinaus sollte die Temperatur während der Verarbeitung nicht über 30 °C liegen.

Um einen zu schnellen Wasserentzug aus dem frischen Putz durch starken Sonnenschein (hohe Oberflächentemperaturen) und/oder Wind zu verhindern (Gefahr der Rissbildung, Festigkeitsabfall), sind vorzugsweise für Außenputze besondere Schutzmaßnahmen/Nachbehandlung (z. B. Abhängen, Feuchthalten) erforderlich.

Weitere Hinweise zu den klimatischen Bedingungen beim Umerputzen siehe auch Merkblatt „Verputzen, Wärmedämmen, Spachteln, Beschichten bei hohen und niedrigen Temperaturen“ [6].

7.2 Vorbereitung und Vorbehandlung des Putzgrundes

7.2.1 Allgemeines

Zur Vorbereitung und Vorbehandlung des Putzgrundes gehören alle Maßnahmen, die einen festen und dauerhaften Verbund zwischen Putz und Putzgrund fördern.

7.2.2 Vorbereitung des Putzgrundes

7.2.3 Vorbehandlung des Putzgrundes

Zu den nach der Putzgrundprüfung erforderlichen Maßnahmen der Putzgrundvorbehandlung zählen z. B.:
- Abfräsen mit der Putzfräse, Abschlagen von Altputz
- Hochdruckreinigung
- Spritzbewurf
- Aufbringen von organischen Haftbrücken
- Auftragen einer mineralischen Haftbrücke, z. B. auf Beton oder Dämmplatten
- Maßnahmen zur Vorbehandlung stark saugender Untergründe, z. B. das Auftragen einer Aufbrennsperre zur Vergleichmäßigung des Putzgrundes und zur Reduzierung des Wasserentzuges aus dem Mörtel
- Anbringen von Putzträgern
- Aufrauen und Austrocknen der Oberfläche
- Ausgleichen von Unebenheiten

Zu den Materialien, die aufgebracht werden können, zählen insbesondere:
- ein teilweise deckender (warzenförmiger) oder ein voll deckender Spritzbewurf oder
- eine kunstharzmodifizierte mineralische Haftbrücke (Haftmörtel) oder
- eine Grundierung/Aufbrennsperre auf Basis organischer Bindemittel oder
- ein Voranstrich/Grundierung vor dem Auftragen von Oberputzen.
Grundsätzlich ist im Außenbereich die zweischichtige Arbeitsweise „nass in nass“ (siehe Abschnitt 7.3.2) einer Aufbrennsperre vorzuziehen. Soll trotzdem nach Absprache mit dem Trockenmörtelhersteller eine solche Grundierung verwendet werden, ist darauf zu achten, dass keine Filmbildung eintritt.

Vorbehandlung bei Kalk- bzw. Kalkzementputzen
Bei stark saugenden Putzgründen ist im Regelfall eine Vorbehandlung nötig, um die Saugeigenschaften zu regulieren. Dazu kann je nach Putzgrund ein geeigneter Haftmörtel oder ein voll deckender Spritzbewurf aus Zementmörtel aufgebracht werden. Im Allgemeinen ist es ausreichend, ein spezielles Putzmaterial zu verwenden und/oder den Unterputz in einer Putzlage zweischichtig „nass in nass“ aufzutragen.

Beim Ziegeln als Putzgrund ist zur Vorbereitung ein geeigneter Haftmörtel aufzubringen und mit einer Zahntraufel zu verziehen. Es können jedoch auch besonders dafür geeignete Haftputzmörtel verwendet werden, bei denen keine zusätzliche Vorbereitung der Betonfläche notwendig ist. Bezüglich ihrer Eignung als einlagiger Putz auf Beton müssen die jeweiligen Herstellerangaben beachtet werden.

Vorbehandlung bei Putzen mit organischen Bindemitteln

7.2.4 Unterschiedliche Putzgründe

Ziegel
Im Allgemeinen können Ziegel bei fachgerechter Ausführung ohne besondere Vorbereitungsarbeiten verputzt werden. Der Unterputz wird zweischichtig „nass in nass“ aufgetragen.

Kalksandsteine
Eine besondere Vorbehandlung des Putzgrundes ist bei gleichmäßig normal saugendem Kalksandstein-Mauerwerk nicht erforderlich.
Bei Kalksandsteinen, die unterschiedliches oder sehr geringes Saugverhalten aufweisen, ist eine besondere Maßnahme zur Verbesserung der Haftung notwendig, z. B. das Aufbringen einer mineralischen Haftbrücke.

Bei Unterputzen, die als Untergrund für Beläge (z. B. Fliesen) dienen sollen, oder in Fällen, in denen besonders hohe Putzdicken erforderlich sind, sind Maßnahmen zur Verbesserung der Haftung notwendig.

Porenbetonsteine

Es kann erforderlich sein, auf das Mauerwerk vor dem Verputzen eine Grundierung („Aufbrennsperre“) aufzubringen; siehe auch Abschnitt 7.2.3.

Leichtbetonsteine

Leichtbetonsteine und Wandelemente mit haufwerksporiger Struktur besitzen im Allgemeinen eine rauhe Oberfläche, sind kapillar schwach saugend und benötigen aus diesem Grund keine besondere Vorbereitung des Putzgrundes.

Betonflächen

Auf Betonflächen ist eine Haftbrücke mit einer Zahntraufe vollflächig aufzubringen. Die Putzdeckung in den Rillen muss mindestens 2 mm betragen. Vor dem Verputzen ist eine Standzeit von mindestens zwei Tagen (bei ungünstiger Witterung entsprechend länger) einzuhalten.

Es werden auch geeignete Putzmörtel (Haftmörtel) auf Kalk-Zement-Basis zur Verarbeitung ohne Haftbrücke auf Beton angeboten.

Flächen mit vorhandenem Putz

Feste, tragfähige und saubere Flächen mit vorhandenem Putz können mit dafür geeigneten Haft- und Renovierungsmörteln überarbeitet werden. Sind im Altputz Risse vorhanden, empfiehlt es sich, in diesen speziellen Putzmörtel ein Armierungsgewebe vollflächig einzubetten.

Salzhaltiger Putzgrund

7.3 Aufbringen des Mörtels

7.3.1 Allgemeines
Wenn der Putzgrund entsprechend Abschnitt 7.2 vorbehandelt wurde, kann anschließend der Mörtel für die einzelnen Putzlagen in gleichmäßigen Schichtdicken aufgebracht werden.

7.3.2 Unterputz
Die Arbeitsweise, den Unterputz in zwei Arbeitsgängen „nass in nass“ anzutragen, hat sich bewährt.

Im ersten Arbeitsgang wird dabei gerüstlagenweise eine Schicht von rd. 10 mm Dicke (etwa halbe Lagendicke) angetragen, die im zweiten Arbeitsgang auf die vorgesehene Unterputzdicke von 15 bis 20 mm fertiggestellt wird. Die erste Schicht wird nach dem Auftragen mit der Kartsche, vorzugsweise mit einer Zahnkartsche, verzogen.

Nachdem die Putzoberfläche von „glänzend“ in „matt“ umschlägt (nach rd. 10 bis 20 Minuten, der Zeitpunkt ist abhängig vom Saugverhalten des Putzgrundes und von den Witterungsbedingungen), wird die zweite Putzschicht aufgetragen und verzogen.

Insgesamt ist der Wasserentzug der zweiten Schicht daher deutlich geringer als der der ersten Schicht. Durch das ausgeglichene Wasserangebot ist nun auch eine leichtere Verarbeitung der zweiten Schicht bzw. der gesamten Putzlage möglich.

Diese zweischichtige Arbeitsweise unterscheidet sich von der zweilagigen Verarbeitung, bei der die zweite Lage erst nach dem Erharten der ersten Lage aufgetragen wird.

Der frisch aufgetragene Putz ist mit geeigneten Maßnahmen vor schädlichen Witterungseinflüssen, z. B. starkem Wind, Sonne oder Frost, zu schützen.

7.3.3 Putzbewehrung
Soll zur Erhöhung des Risswiderstandes eine Putzbewehrung/-armierung eingelegt werden, so ist sie in die zugbelastete Zone des Putzes straff und faltenfrei einzubetten, um die entstehenden Zugkräfte aufnehmen zu können. Putzbewehrungen müssen im Allgemeinen in der oberen Hälfte der Putzlage möglichst oberflächennah liegen. Die Überlappung von Putzbewehrungen muss mindestens 100 mm, auf benachbarte Bauteile mindestens 200 mm betragen.

Wirkungsvoller in Bezug auf die Erhöhung des Risswiderstandes sind Armierungsputzte mit Armierungsgewebe in einer eigenen Lage (siehe Abschnitte 4.4 und 4.9).

7.3.4 Wärmedämmputzsysteme
Im Allgemeinen wird Dämmputz in Lagen bis ca. 50 mm einlagig und bis 100 mm zweilagig, vornehmlich maschinell aufgetragen. Bei größeren Dicken sind besondere Maßnahmen, z. B. ein Putzträger, erforderlich.

Bei nicht tragfähigen und bei nicht oder mangelhaft saugenden Altputzen oder bei solchen Putzgründen, die bereits mit Anstrichen versehen sind, sind für Wärmedämmputzsysteme wellenförmige oder ebene Putzträger aus geschweißtem Drahtnetz mit jeweils besonderen Befestigungselementen erforderlich.

7.3.5 Sanierputze
7.3.6 Putze mit organischen Bindemitteln

Putze mit organischen Bindemitteln (pastöse Produkte) werden in verarbeitungsfertiger Form im Eimer oder Kleinsilo auf die Baustelle geliefert und meist direkt aus dem Gebinde verarbeitet. Sie werden in einer Lage auf den Untergrund aufgebracht und in gewünschter Form strukturiert. Putze mit organischen Bindemitteln werden in der Regel dünnlagig in einer Dicke von wenigen mm, meist in Kornstärke, verarbeitet.

7.4 Standzeiten

Tabelle 8 gibt einen Überblick über die Standzeiten, die unter normalen Witterungsbedingungen eingehalten werden müssen, bevor die nächste Putzlage aufgetragen werden kann. Die angegebenen Zeiten stellen Richtwerte dar, die sich in der Regel auf eine Temperatur von etwa 20 °C und eine relative Luftfeuchtigkeit von etwa 60 % beziehen.

Mit fallenden Temperaturen verläuft die Erhärtungs- bzw. Abbindereaktion langsamer, dies muss bei der Bemessung der Standzeit berücksichtigt werden. Bei +5 °C sollte diese auf rund das Doppelte, also auf zwei Tage je mm Putzdicke, und bei Armierungsputz auf ca. 14 Tage verlängert werden.

Unter +5 °C kommt die Reaktion nahezu zum Erliegen, ein Auftrag der nächsten Putzlage sollte bei solchen Bedingungen nicht mehr stattfinden.

7.5 Putzdicken

In Tabelle 9 sind die mittleren Putzdicken für die unterschiedlichen Putzweisen zusammengefasst. Für die Erfüllung besonderer Anforderungen können auch andere Dicken erforderlich werden. Einige Hersteller bieten abweichend von der Norm speziell für Porenbeton abgestimmte dünnlächige Systeme an, die andere als die in Tabelle 9 aufgeführten Dicken aufweisen.

<table>
<thead>
<tr>
<th>Tabelle 8: Wartezeiten (Standzeiten) bei normalen Witterungsbedingungen bis zum Auftrag der nächsten Putzlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearbeitungsvorgang bzw. Putzart</td>
</tr>
</tbody>
</table>
| Bearbeitung von Fehlstellen mit geeignetem Mörtel, i. d. R. Leichtmörtel | 1 Tag je mm Dicke; z. B.:
- Stoßfugenbreite 10 mm ⇒ 10 Tage Standzeit
- Fehlstellentiefe 15 mm ⇒ 15 Tage Standzeit |
| Unterputz | 1 Tag je mm Unterputzdicke |
| Wärmedämmputz | 1 Tag je 10 mm Putzdicke, mindestens jedoch 7 Tage |
| Armierungsputz (ca. 5 mm dick) | mindestens 7 Tage |

<table>
<thead>
<tr>
<th>Tabelle 9: Putzdicken für Innen- und Außenputze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putz</td>
</tr>
<tr>
<td>Mehrlagiger Außenputz (Dicke des Systems aus Unter- und Oberputz)</td>
</tr>
<tr>
<td>Innenputz (bei mehrlagigem Innenputz Dicke des Systems aus Unter- und Oberputz)</td>
</tr>
<tr>
<td>Einlagiger Innenputz aus Werk-Trockenmörtel</td>
</tr>
<tr>
<td>Dünflagenputz (innen)</td>
</tr>
<tr>
<td>Sanierputz</td>
</tr>
</tbody>
</table>
| Wärmedämmputzsystem
 Unterputz | ≥ 20 und ≤ 100 |
 Oberputz | 8 a) |
 Ausgleichsputz (falls vorhanden) | ≥ 4 |

a) An einzelnen Stellen darf die mittlere Putzdicke um bis zu 5 mm unterschritten werden.

b) Einige Hersteller bieten abweichend von der Norm speziell für Porenbeton abgestimmte dünnlächige Systeme an, die andere als die in Tabelle 9 aufgeführten Dicken aufweisen.

c) Abhängig vom Versalzungsgrad (siehe WTA-Merkblatt „Sanierputzsysteme“ [3])

d) Dicke des Oberputzes einschließlich eines ggf. aufgebrachten Ausgleichsputzes; Mindestdicke 6 mm; Höchstdicke 12 mm
Bei der Ausführung von Wärmedämmputzen muss der Unterputz mindestens 20 mm und soll i. d. R. höchstens 100 mm dick sein. Bei größeren Dicken sind besondere Maßnahmen erforderlich.

Die mittlere Dicke des Oberputzes, der auf Wärmedämmputz mit EPS-Zuschlag aufgebracht wird, muss einschließlich eines gegebenenfalls erforderlichen Ausgleichsputzes 8 mm (Mindestdicke 6 mm, Höchstdicke 12 mm) betragen. Dabei muss der Ausgleichsputz mindestens 4 mm dick sein. Bei Wärmedämmputzen mit anderen leichten Zuschlägen sind für die Dicke des Oberputzes die Herstellervorschriften zu beachten.

7.6 Egalisationsanstriche

7.7 Beschichtungen (Anstriche)

Beschichtungen, z. B. auf unpigmentierten, grauen Putzen, werden in der Regel in mindestens zwei Arbeitsgängen mit Grund- und Deckbeschichtung nach Herstellervorschrift aufgebracht. Es handelt sich also um ein Beschichtungssystem, das aus mindestens zwei Schichten besteht.
8 Innenputz

8.1 Überblick

Putze auf Wänden und Decken haben in Innenräumen einen hohen Flächenanteil. Allein deshalb haben sie erheblichen Einfluss auf das Raumklima, die Raumarchitektur und den Charakter eines Raumes. Sie dienen nicht nur zum Glätten einer Rohbauwand oder als Träger einer Wandbekleidung, sondern können mit ihren gestalteten Oberflächen auch „für sich“ stehen.

Es wird zwischen mineralischen und organisch gebundenen Putzen unterschieden.

Grundsätzlich sind Innenputze deutlich weniger beansprucht als Außenputze, die großen Temperaturunterschieden und ständig wechselnden Feuchteeinwirkungen ausgesetzt sind. Mineralische Außenputze sind generell auch zur Anwendung im Innenbereich geeignet. Bei organisch gebundenen Putzen sind die Herstellerangaben zu beachten, da aufgrund ihrer Zusammensetzung nicht alle Außenputze auch im Innenbereich eingesetzt werden können.

8.2 Mineralische Innenputze

Mineralische Innenputze haben ein feinporiges, diffusionsoffenes Gefüge und können Luftfeuchtigkeit aufnehmen und wieder abgeben. Diese Pufferwirkung trägt zu einem ausgeglichenen Raumklima bei. Sie kommt am besten zur Wirkung, wenn die erforderlichen Schichtdicken (siehe Tabelle 9) eingehalten werden und die Diffusionsfähigkeit dieser Putze nicht durch Beschichtungen oder Wandbekleidungen eingeschränkt wird.

Mineralische Innenputze sind lösemittelfrei und nicht brennbar. Sie geben keine Schadstoffe an die Innenraumluft ab.

Aufgrund der fein abgestimmten Sieblinien der eingesetzten Sande und Feinanteile lassen sich verschiedene Putzoberflächen gestalten. Bei gefilzten Oberflächen tritt die eingesetzte Sandkörnung als Gestaltungselement in den Vordergrund, während bei geglätteten Oberflächen ein ebenmäßiges Erscheinungsbild gefragt ist. Solche Oberflächen eignen sich als Untergrund für dekorative Schichtungen, wie z.B. verschiedene Anstriche, Oberputze oder auch Tapeten.

Wird Leichtputze mit organischen Zusätzen auf Innenwänden farblich beschichtet (gestrichen), sind ausschließlich wässrige Systeme zu verwenden, um ein Auflösen der Leichtzuschläge durch Lösungsmittel zu vermeiden.

8.2.1 Gipsputze

Gipsputze sind als Innenwandputz sowie Innendeckenputz für trockene Räume und Feuchträume, nicht jedoch für Nassräume geeignet (siehe auch Abschnitt 8.4). Sie müssen der DIN EN 13279-1 entsprechen.

Unterschieden werden:
Gips-Putztrockenmörtel oder Gipsleicht-Putztrockenmörtel
Putzmörtel, der aus mindestens 50 % Calciumsulfat als Hauptbindemittel und nicht mehr als 5 % Kalkhydrat besteht (Bezeichnung nach DIN EN 13279-1: B 1 oder B 4)

Gipshaltiger Putztrockenmörtel oder gipshaltiger Leicht-Putztrockenmörtel
Putzmörtel, der aus weniger als 50 % Calciumsulfat als Hauptbindemittel und nicht mehr als 5 % Kalkhydrat besteht (Bezeichnung nach DIN EN 13279-1: B 2 oder B 5)

Gipskalk-Putztrockenmörtel oder Gipskalkleicht-Putztrockenmörtel
Putzmörtel, dessen Hauptbindemittel Calciumsulfat ist und der als weiteres Bindemittel mehr als 5 % Kalkhydrat enthält (Bezeichnung nach DIN EN 13279-1: B 3 oder B 6)
Gipstrockenmörtel für Putz mit erhöhter Oberflächenhärte

Putzmörtel zur Herstellung von Putz, für den eine erhöhte Oberflächenhärte gefordert wird (Bezeichnung nach DIN EN 13279-1: B 7)

Hinweis für gipshaltige Putze

Bei stark saugenden Putzgründen oder Mauerwerk aus verschiedenen Baustoffen ist zur Reduktion bzw. zur Vergleichmäßigung des Saugvermögens eine geeignete Grundierung (Aufbrennsperre) aufzutragen, die vor dem Verputzen getrocknet sein muss.

Ein Putzgrund ist ausreichend trocken, wenn oberflächennah (bis etwa 30 mm Tiefe) die in DIN 4108-4 bzw. DIN EN 12524 für diesen Baustoff genannte Ausgleichsfeuchte annähernd erreicht ist. Bei Normalbeton sollte die Restfeuchte einen Masseanteil von 3 % im Oberflächenbereich bis 3 cm Tiefe nicht überschreiten. Bei Leichtbeton gilt ein anderer Feuchtegehalt, der aus der Trockenrohdichte des Leichtbetons errechnet werden kann. 3)

Putzgründe mit höheren Feuchtegehalten dürfen erst nach weiterer Trocknung verputzt werden. Ansonsten ist ein Verputzen mit gipshaltigen Materialien nicht möglich, es sei denn, es werden spezielle Haftbrücken, die eine höhere Beton-Restfeuchte zulassen, oder ein mechanisch befestigter Putzträger verwendet.

8.2.2 Kalkputze

8.2.3 Kalkzementputze

Kalkzementputze sind feuchtebeständig und deshalb auch für die Verwendung in Feucht- und Nassräumen geeignet. Sie erhärten auch auf feuchten Untergründen. Kalkzementputze sind fester als reine Kalkputze und entwickeln ihre Festigkeitseigenschaften sehr kontrolliert.

8.2.4 Zementputze

Zementputze, die als eigenschaftsbestimmendes Bindemittel Zement enthalten, werden nur in speziellen Anwendungsfällen verwendet, z. B. in Umgebungen mit einer außergewöhnlichen Feuchtebelastung oder wenn eine hohe Festigkeit verlangt wird. Zementputze entwickeln hohe Druckfestigkeiten (i. d. R. > 6 N/mm²), sind infolge dessen sehr dicht und kaum verformungsfähig (starr). Sie können nur auf dafür geeigneten Untergründen, z. B. Betonwänden, zur Anwendung kommen.

8.2.5 Mineralische Edelputze (Dekorputze)

Mineralische Edelputze geben nicht nur der äußeren Fassade ihr Gesicht, sondern werden häufig auch zur Gestaltung von Innenräumen eingesetzt. Die weiße oder farbige Putzoberfläche in der gewählten Struktur bildet einen charaktervollen Raumbereich.

Mineralische Edelputze für außen sind in der Regel ohne Einschränkungen auch im Innenbereich einsetzbar.

8.2.6 Lehmputze

Lehmputze werden als erdfeuchte oder trockene Mischung auf die Baustelle geliefert und dort mit Wasser

3) Anmerkung: Normalbeton hat eine Trockenrohdichte von rd. 2 300 kg/m³. Da Leichtbeton eine andere Trockenrohdichte aufweist, muss der Anforderungswert von 3 M.-% entsprechend der Trockenrohdichte des Leichtbetons errechnet werden.

Beispiel: Für Leichtbeton mit einer Trockenrohdichte von 1 400 kg/m³ ergibt sich der zulässige Feuchtegehalt zu:

\[
2 300 \text{ kg/m}^3 \times 3 \text{ M.-%} = 6,9 \text{ M.-%}
\]

Dieser Wert entspricht in etwa der Ausgleichsfeuchte.

8.3 Innenputze mit organischen Bindemitteln

Putze mit organischen Bindemitteln stehen für den Innenbereich in großer Farbton-, Struktur- und Körnungs­vielfalt zur Verfügung, wobei hier in besonderer Weise die Verarbeitung optimiert ist und der dekorative Charakter betont wird, weshalb sie auch als Dekorputze bezeichnet werden.

Putze mit organischen Bindemitteln werden verarbeitungs­fertig im Eimer oder Kleinsilo auf die Baustelle geliefert und müssen der DIN EN 15824 entsprechen. Unterschieden werden aufgrund der enthaltenen Bindemittelbasis die in Tabelle 1 genannten Putzarten. Im Innenbereich werden z. B. die folgenden Putzarten eingesetzt:

Dispersionen enthalt. Dispersions-Silikatputze (Silikatputze) sind überwiegend mineralisch und teilweise organisch gebunden. Für die Erhärtung („Verkieselung“) ist ein geeigneter mineralischer Untergrund erforderlich.

Dispersionszement (Kunstharzputz), dessen eigenschafts­bestimmendes Bindemittel aus einer Polymerdispersion besteht.

8.4 Auswahl von Innenputzsystemen

Die drei wichtigsten Kriterien für die Auswahl eines Innenputzsystems sind:

- Art und Eigenschaften des Untergrundes
- Art der Verwendung (z. B. im Hinblick auf die spätere Belastung)
- Art der nachfolgenden Oberflächenbehandlung, wie z. B. Beschichtung, Tapete o. Ä.

8.4.1 Auswahl nach Art und Eigenschaften des Untergrundes

Innenputze können auf alle Untergründe aufgebracht werden, wie sie im Abschnitt 3 dieser Leitlinien beschrieben sind. Die darin enthaltenen Aussagen zur Vorbe­reitung des jeweiligen Putzgrundes können auch für
Innenputze übernommen werden. Darüber hinaus sind bei Betonflächen sowie bei Verwendung sogenannter „Dünnlagenputze“ folgende Besonderheiten zu beachten:

Innenputz auf Betonflächen

Bei Innenputzarbeiten auf Betonflächen, insbesondere auf Wand- oder Deckenfertigteilen aus Normal- oder Leichtbeton, sind besondere Anforderungen zu beachten (siehe Infokasten „Hinweis für gipshaltige Putze“ auf S. 37).

Dünnlagenputze

8.4.2 Auswahl nach Art der Verwendung

Im Wesentlichen werden drei Nutzungsbereiche unterschieden:

1. **Trockene Räume**
2. **Feuchträume**, wie Bäder in Wohnungen, vergleichbare Räume in Hotels und Krankenhäusern, häuslichen Küchen und WC-Gemischen, gewerbliche Küchen, Brauereien, Schachthöfe usw.

An Innenputze, die als Untergrund für Fliesen/Platten dienen sollen oder die in Nassrinnen (lfd. Nr. 3) Verwendung finden, sind spezielle (besondere) Anforderungen zu stellen.

Innenputz als Untergrund für Fliesen und Platten

Siehe Abschnitt 8.10 der Leitlinien.

Innenputz in Nassräumen

8.4.3 Auswahl nach Art der nachfolgenden Oberflächenbehandlung

Innenputze, die mit Tapeten oder Beschichtungen versehen werden, müssen eine bestimmte Mindestdruckfestigkeit aufweisen. Näheres regelt das BFS-Merkblatt Nr. 10 „Beschichtungen, Tapezier- und Klebearbeiten auf Innenputz“ [9].

Innenputze, die mit organisch gebundenen Oberputzen versehen werden, müssen eine deklarierte Druckfestigkeit von mindestens 2 N/mm² aufweisen oder die Eignung des Unterputzes muss vom Hersteller bestätigt sein.

8.5 Vorbereitung des Putzgrundes, Putzgrundvorbehandlung

Es gelten die in Abschnitt 7.2 beschriebenen Grundsätze. Zusätzlich gilt:

Vorbehandlung bei Gipsputzen

Überputzen von Fugen und Anschlüssen

Wenn es erforderlich ist, Fugen elastisch auszubilden, ist darauf zu achten, dass nur Fugendichtstoffe verwendet werden, die im Hinblick auf Fugenbreite und Fugentiefe geeignet sind.

8.6 Aufbringen des Mörtels

Es gelten die im Abschnitt 7.3 beschriebenen Grundsätze. Zusätzlich gilt für Innenputze:

Arbeitsweise bei Kalkputzen

Kalkputze werden in der Regel in zwei Lagen verarbeitet. Das heißt, zunächst wird eine Putzlage aufgetragen, auf die, z. B. am nächsten Tag, die zweite Putzlage aufgebracht wird. Die zweite Putzlage ist meist dünner als die erste Lage (3-4 mm) und kann aus demselben Material bestehen wie die erste Lage oder es können spezielle Oberputze verwendet werden. Die Oberfläche wird je
nach gewünschtem Erscheinungsbild abgerieben oder gefilzt. Wenn die Oberfläche besonders glatt sein soll, kann auf die untere Lage auch eine sogenannte „Kalkglätte“ aufgetragen werden, meist in einer Schichtstärke von 1 mm.

Es hat sich bewährt, die untere Putzlage nicht in einem Arbeitsgang, sondern mehrschichtig nach dem Verfahren „nass in nass“ (siehe Abschnitt 7.3.2) aufzubringen.

Arbeitsweise bei Gipsputzen

Arbeitsweise bei Lehmputzen

Einlagige Lehmputze können auf ebenen, maßgerechten und gleichmäßig saugenden Untergründen eingesetzt werden. Die übliche Putzdicke von einlagigen Putzen/Oberputzen ist 10 bis 12 mm, von Dünnlagenputzen 3 bis 5 mm. Unterputz wird in der Regel 10 bis 20 mm dick aufgetragen. Unterputz soll vor Auftrag des Oberputzes so trocken sein, dass sich keine Schwindrisse mehr bilden.

Da die Erhärtung durch Trocknen des Lehmhs erfolgt, ist nach dem Verputzen für eine gute Lüftung zu sorgen.

8.7 Austrocknen der Putzflächen

Trocknung bei niedrigen Temperaturen

Zusätzlich muss eine hohe Luftfeuchtigkeit, vor allem in geschlossenen Räumen, vermieden werden. Erhöhte Luftfeuchtigkeit ist nach Abschluss der Putzausführung durch regelmäßiges Stoßlüften/Querlüften (wiederholtes kurzzeitiges Lüften) abzuführen, um Kondensation an der Putzoberfläche zu vermeiden.

Falls eine Beheizung eingesetzt wird, muss beachtet werden, dass erwärmte Luft viel Feuchtigkeit aufnimmt, die durch Lüften abgeführt werden muss. Zu beachten ist außerdem, dass Gas-Heizgeräte (gasbetriebene Bauheizgeräte) zu einer Erhöhung der Luftfeuchtigkeit beitragen, denn bei der Verbrennung von 1 kg Propangas werden etwa 1,63 kg Wasser freigesetzt. Heizungen dieser Art sollten deshalb nur in gut belüfteten Bereichen zum Einsatz kommen.

Es wird empfohlen, die Organisation und Durchführung der Heizungs- und Lüftungsmaßnahmen einvernehmlich zwischen Bauleitung, Auftragnehmer und Auftraggeber zu planen und zu vereinbaren.

Gipsputz

Gipsputze trocknen bei günstigen Witterungsverhältnissen (höhere Temperaturen und geringe Luftfeuchtigkeit) bei einer mittleren Putzdicke von ca. 10 mm relativ schnell, meist innerhalb von ca. 14 Tagen. Bei weniger günstigen Witterungsbedingungen kann sich die Trocknungszeit deutlich verlängern.

Kalk-, Kalkzement- und zementgebundener Putz

Zu schnelles Austrocknen bei hohen Temperaturen

8.8 Putzdicken

In Tabelle 9 sind die mittleren Putzdicken für die unterschiedlichen Putzweisen zusammengefasst. Für die Erfüllung besonderer Anforderungen können auch andere Dicken erforderlich werden. Einige Hersteller bieten speziell für Porenbeton abgestimmte dünnwichtige Systeme an, die andere als die in Tabelle 9 aufgeführten Dicken aufweisen.

Bei Verwendung von Wärmedämmputz als Innendämmung ist die maximale Putzdicke abhängig von den bauphysikalischen Randbedingungen.

8.9 Oberflächenqualität

<table>
<thead>
<tr>
<th>Qualitätsstufe</th>
<th>Ausführungsart der Putzoberfläche</th>
<th>Beschaffenheit/Eignung der Oberfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q 1</td>
<td>abgezogen</td>
<td>Geschlossene Putzfläche</td>
</tr>
<tr>
<td></td>
<td>geglättet</td>
<td>Geschlossene Putzfläche</td>
</tr>
<tr>
<td></td>
<td>abgerieben</td>
<td>Geschlossene Putzfläche</td>
</tr>
<tr>
<td></td>
<td>gefilzt</td>
<td>Geschlossene Putzfläche</td>
</tr>
</tbody>
</table>

Ausführungsart der Putzoberfläche
- **abgezogen**
- **geglättet**
- **abgerieben**
- **gefilzt**

Ebenheitsrichtlinien nach DIN 18202

Tabelle 10: Qualitätsstufen (QS) von Innenputz-Oberflächen nach Merkblatt „Putzoberflächen im Innenbereich“ [12]

Q 1
- Geschlossene Putzfläche

Q 2
- **Standard**
- geeignet z. B. für:
 - Oberputze, Körnung ≥ 2,0 mm
 - Wandbeläge aus Keramik, Natur- und Betonwerkstein usw.
- geeignet z. B. für:
 - Oberputze, Körnung > 1,0 mm
 - mittel- bis grobstrukturierte Wandbekleidungen, z. B. Raufasertapeten mit Körnung RM oder RG nach BFS-Info 05-01
 - matte, gefüllte Anstriche/Beschichtungen (z. B. quarrzgefüllte Dispersionsbeschichtung), die mit langflorigem Farbroller oder mit Strukturrolle aufgetragen werden

Q 3
- geeignet z. B. für:
 - Oberputze, Körnung ≥ 1,0 mm
 - Wandbeläge aus Fein-Keramik, großformatige Fliesen, Glas, Naturwerkstein usw. (z. B. > 1 600 cm² bei einer Druckfestigkeit von > 6 N/mm²)
- geeignet z. B. für:
 - Oberputze, Körnung ≤ 1,0 mm
 - Fein strukturierte Wandbekleidungen, z. B. Raufasertapeten mit Körnung RF oder RG nach BFS-Info 05-01
 - matte, fein strukturierte Anstriche/Beschichtungen

Q 4
- geeignet z. B. für glatte Wandbekleidungen und Beschichtungen mit Glanz, z. B.:
 - Metall, Vinyl- oder Seidentapeten
 - Lasuren oder Anstriche/Beschichtungen bis zum mittleren Glanz
 - Spachtel- und Glätte-techniken

Ebenheitsanforderungen an die Oberfläche

<table>
<thead>
<tr>
<th>Ebenheitsanforderungen an die Oberfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>abgezogen</td>
</tr>
<tr>
<td>geglättet</td>
</tr>
<tr>
<td>abgerieben</td>
</tr>
<tr>
<td>gefilzt</td>
</tr>
</tbody>
</table>

**Bei der Angabe von Qualitätsstufen muss immer die gewünschte Ausführungsart „abgezogen“, „geglättet“, „abgerieben“ oder „gefilzt“ mit angegeben werden, z. B. „Q 2 – geglättet“.”

Die Qualitätsstufe Q 2 wird ausgeführt, wenn keine darüber hinausgehenden Anforderungen vertraglich vereinbart wurden.

In der Ausführungsart „abgezogen“ gelten erhöhte Anforderungen an die Ebenheit.
8.10 Putz unter Fliesen und Platten

Anforderungen an Putzmörtel

Putze nach DIN EN 998-1 bzw. DIN EN 13279 sind als Untergrund für Fliesen und Platten geeignet, wenn die folgenden Kriterien erfüllt sind:

- deklarierte Druckfestigkeit ≥ 2,0 N/mm² (alle Putze) und
- Trockenrohdichte ≥ 1 000 kg/m³ (nur Kalk-, Kalkzement- und Zementputze).

Andere Putze, wie z. B. Leichtputze vom Typ II, sind als Untergrund für Fliesen/Platten nur geeignet, wenn sie vom Hersteller dafür ausdrücklich freigegeben wurden.

Eine Mindestdruckfestigkeit von ≥ 2,0 N/mm² hat sich abweichend von bisherigen Regelwerken in der Praxis bewährt.

Putzauswahl

Wandflächen, die mit Fliesen/Platten belegt werden sollen, sind vom Architekten/Planer hinsichtlich der zu verwendenden Baustoffe detailliert zu planen.

Dabei sind für die Putzauswahl z. B. folgende Kriterien zu berücksichtigen:

- Anforderung der Feuchtebeanspruchungsklasse nach ZDB-Merkblatt „Hinweise für die Ausführung von flüssig zu verarbeitenden Verbundabdichtungen mit Bekleidungen und Belägen aus Fliesen und Platten für den Innen- und Außenbereich“ [14]
- Flächengewicht der Fliesen/Platten.

Feuchtebeanspruchungsklasse

Im „mäßig“ beanspruchten Bereich (nicht drückendes Wasser im Innenbereich, nicht sehr häufige Einwirkung von Brauch- oder Reinigungswasser, z. B. häusliche Bäder und Hotel-Badezimmer) sind die oben beschriebenen Gips-, Kalkzement- und Zementputze einsetzbar.

Flächengewicht der Fliesen/Platten

Die Auswahl des Putzes ist weniger vom Format der Fliesen/Platten als vielmehr von deren Flächengewicht abhängig. Überschreitet das Gewicht der Fliesen/Platten einschließlich Dünnbettmörtel 25 kg/m², sind Unterputze mit einer Druckfestigkeit von mindestens 3,5 N/mm² zu verwenden oder Putze, die vom Hersteller für diese Anwendung freigegeben sind.

Zusätzliche Angaben für Gipsputze enthält der IGB-Informationsdienst Nr. 3 „Gipsputz und Fliesen“ [15].

Putzprofile

Das Verlegen von Fliesen und Platten stellt an die Putzoberfläche im Regelfall eine erhöhte Anforderung an die Ebenheit (z. B. Q 3 – abgezogen nach Tabelle 10, Spalte 1). Um diese zu erreichen, sollten vor dem Putzauftrag geeignete Putzprofile gesetzt werden.

Der zu verwendende Ansetzmörtel für die Putzprofile muss auf den Unterputz abgestimmt sein.

Putzausführung

ACHTUNG: Die Eignung eines Untergrundes für das Ansetzen von Fliesen wird verbessert, wenn die Putzoberfläche nicht gefilzt oder geglättet, sondern nur mit einer Richtlatte/Kartätsche scharf abgezogen bzw. abgekratzt wird.

Um die Formänderung von Unterkonstruktionen im Boden/Wand-Bereich aufzunehmen, besteht auch die

Anforderung an die Oberflächenbeschaffenheit der Putze

Entspricht der Unterputz nicht den oben genannten Grundanforderungen, z. B. gerissene Putzflächen oder zu geringe Festigkeit, so kann die Ausführungssicherheit ggfs. mit geeigneten Zusatzmaßnahmen verbessert werden, z. B. durch die Verwendung eines Armierungsputzes mit Gewebeeinlage.

Belegreife von Putzen

Vor Beginn der Fliesenarbeiten muss der Putz trocken und staubfrei sein.

Bei Kalk-, Kalkzement- und Zementputzen beträgt die Standzeit (Trocknungszeit) bis zum Ansetzen der Fliesen/Platten in der Regel ein Tag pro mm Putzdicke. Niedrige Temperatur und/oder hohe Luftfeuchtigkeit verlängern die Standzeit (siehe Abschnitt 7.4).

Nach den Putzarbeiten müssen die Räume ausreichend temperiert und regelmäßig gelüftet werden, um ein kontrolliertes Austrocknen des Putzes sicherzustellen (siehe auch Abschnitt 8.7).

Untergrundvorbehandlung vor dem Ansetzen

Je nach Saugverhalten und Art des Putzes kann eine geeignete Grundierung erforderlich sein.

Ansetzen von Fliesen und Platten

Das Ansetzen von Fliesen/Platten erfolgt in der Regel im Dünnbettverfahren nach DIN 18157.
9 Mitgeltende Normen und Merkblätter

9.1 Normen

Alle Literaturangaben zu Normen beziehen sich auf das jeweils gültige Ausgabedatum.

DIN 105: Mauerziegel;
 Teil 100: Mauerziegel mit besonderen Eigenschaften
DIN 1045: Tragwerke aus Beton, Stahlbeton und Spannbeton;
 Teil 2: Beton – Festlegung, Eigenschaften, Herstellung und Konformität – Anwendungsregeln zu DIN EN 206-1
 Teil 100: Ziegeldecken
DIN 1053: Mauerwerk;
 Teil 1: Berechnung und Ausführung;
 Teil 4: Fertigbauteile
DIN 4102: Brandverhalten von Baustoffen und Bauteilen;
 Teil 4: Zusammenstellung und Anwendung klassifizierter Baustoffe, Bauteile und Sonderbauteile
DIN 4108: Wärmeschutz und Energieeinsparung in Gebäuden;
 Teil 3: Klimabedingter Feuchteschutz – Anforderungen, Berechnungsverfahren und Hinweise für Planung und Ausführung;
 Teil 4: Wärme- und feuchteschutztechnische Bemessungswerte
DIN 4213: Anwendung von vorgefertigten Bauteilen aus haufwerksporigem Leichtbeton mit statisch anrechenbarer oder nicht anrechenbarer Bewehrung in Bauwerken
DIN 4223: Vorgefertigte bewehrte Bauteile aus dampfgehärtetem Porenbeton
DIN 18157: Ausführung keramischer Bekleidungen im Dünnbettverfahren;
 Teil 1: Hydraulisch erhärtende Dünnbettmörtel;
 Teil 2: Dispersionsklebstoffe;
 Teil 3: Epoxidharzklebstoffe
DIN 18195: Bauwerksabdichtungen
DIN 18202: Toleranzen im Hochbau – Bauwerke
DIN 18550: Putz – Baustoffe und Ausführung;
 Teil 1: Außenputz;
 Teil 2: Innenputz
DIN 18947: Lehmputzmörtel – Begriffe, Anforderungen, Prüfverfahren
VOB Teil C ATV DIN 18350: VOB Vergabe- und Vertragsordnung für Bauleistungen, Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV), Putz- und Stuckarbeiten
DIN V 106: Kalksandsteine mit besonderen Eigenschaften
DIN V 4165: Porenbetonsteine;
 Teil 100: Plansteine und Planelemente mit besonderen Eigenschaften
DIN V 18151: Hohlblöcke aus Leichtbeton;
 Teil 100: Hohlblöcke mit besonderen Eigenschaften
DIN V 18152: Vollsteine und Vollblöcke aus Leichtbeton;
 Teil 100: Vollsteine und Vollblöcke mit besonderen Eigenschaften
DIN V 18153: Mauersteine aus Beton (Normalbeton);
 Teil 100: Mauersteine mit besonderen Eigenschaften
DIN V 18580: Mauermörtel mit besonderen Eigenschaften
DIN V 20000: Anwendung von Bauprodukten in Bauwerken;
 Teil 401: Regeln für die Verwendung von Mauerziegeln nach DIN EN 771-1;
 Teil 402: Regeln für die Verwendung von Kalksandsteinen nach DIN EN 771-2;
 Teil 403: Regeln für die Verwendung von Mauersteinen aus Beton nach DIN EN 771-3;
 Teil 404: Regeln für die Verwendung von Porenbetonsteinen nach DIN EN 771-4;
 Teil 412: Regeln für die Verwendung von Mauermörtel nach DIN EN 998-2
DIN EN 197: Zement
DIN EN 206: Beton;
 Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität; Deutsche Fassung der EN 206-1
DIN EN 459: Baukalk;
 Teil 1: Begriffe, Anforderungen und Konformitätskriterien; Deutsche Fassung der EN 459-1
DIN EN 771: Festlegungen für Mauersteine;
 Teil 1: Mauerziegel;
 Teil 2: Kalksandsteine;
 Teil 3: Mauersteine aus Beton;
 Teil 4: Porenbetonsteine

DIN EN 998: Festlegungen für Mörtel im Mauerwerksbau;
 Teil 1: Putzmörtel; Deutsche Fassung der EN 998-1
 Teil 2: Mauermörtel; Deutsche Fassung der EN 998-2

DIN EN 1520: Vorgefertigte Bauteile aus haufwerks­porigem Leichtbeton und mit statisch anrechenbarer
 oder nicht anrechenbarer Bewehrung; Deutsche Fassung
 der EN 1520

DIN EN 1996 (Eurocode 6) Bemessung und Konstruktion
 von Mauerwerksbauten;
 Teil 1-1: Allgemeine Regeln für bewehrtes und
 unbewehrtes Mauerwerk und
 DIN EN 1996-1-1/NA Nationaler Anhang

DIN EN 12524: Wärme- und feuchtetechnische
 Eigenschaften – Tabellierte Bemessungswerte

DIN EN 12602: Vorgefertigte bewehrte Bauteile aus
dampfgehärtetem Porenbeton; Deutsche Fassung der
EN 12602 + A1

DIN EN 13168: Wärmedämmstoffe für Gebäude – Werk­mäßige hergestellte Produkte aus Holzwolle (WW) – Spe­zifikation

DIN EN 13279: Gipsbinder und Gips-Trockenmörtel;
 Teil 1: Begriffe und Anforderungen; Deutsche
 Fassung der EN 13279-1

DIN EN 13658: Putzträger und Putzprofile aus Metall –
 Begriffe, Anforderungen und Prüfverfahren;
 Teil 1: Innenputze; Deutsche Fassung der EN 13658-1

DIN EN 13914: Planung, Zubereitung und Ausführung von
 Innen- und Außenputzen;
 Teil 1: Außenputz; Deutsche Fassung der
 EN 13914-1;
 Teil 2: Planung und wesentliche Grundsätze für
 Innenputz; Deutsche Fassung der EN 13914-2

DIN EN ISO 15148: Wärme- und feuchtetechnisches
 Verhalten von Baustoffen und Bauprodukten – Bestim­mung des Wasseraufnahmekoeffizienten bei teilweisem
 Eintauchen; Deutsche Fassung der EN ISO 15148

DIN EN 15824: Festlegungen für Außen- und Innenputze
 mit organischen Bindemitteln; Deutsche Fassung der
 EN 15824
9.2 Richtlinien, Merkblätter und sonstige Literatur

Hinweise zur Ausschreibung

Damit die VOB/C als vereinbart gilt, muss die VOB/B wirksam als Vertragsgrundlage vereinbart werden. Aus § 1 Nr. 1 VOB/B folgt, dass die VOB/C (ATV) dann Bestandteil des Vertrags ist. Die ausgewogenen Regelungen der VOB/B berücksichtigen die Interessen des Auftragnehmers und des Auftraggebers gleichermaßen.

Die ATV DIN 18350 Putz- und Stuckarbeiten ist in sechs Abschnitte aufgeteilt:

0 Hinweise für das Aufstellen der Leistungsbeschreibung
1 Geltungsbereich
2 Stoffe, Bauteile
3 Ausführung
4 Nebenleistungen, Besondere Leistungen
5 Abrechnung

Der Abschnitt 0 gibt Hinweise für den Ausschreibenden und stellt einen Leitfaden zur Aufstellung eines möglichst detailgerechten Leistungsverzeichnisses dar. Somit formuliert er einen Großteil der vorkommenden Bausituationen. Im Abschnitt 0.5 der ATV sind Hinweise zu Abrechnungseinheiten für die Putz- und Stuckarbeiten enthalten, die gegliedert nach Flächenmaß (m²), nach Längenmaß (m) und nach Anzahl (Stück) aufgeführt sind.

Der Abschnitt 5 „Abrechnung“ dient in der ATV der Vereinheitlichung und Vereinfachung der Ermittlung bzw. Abrechnung der erbrachten Leistung. Die Abrechnungseinheiten, die für die Abrechnung der Leistungen vorzusehen und zu vereinbaren sind, sind in Abschnitt 0.5 enthalten.
Kompetente Beratung – innovative Entwicklung

Moderne Baustoffe von höchster Qualität auf der einen und die fachgerechte handwerkliche Ausführung auf der anderen Seite: Das sind die Garanten für dauerhaft schöne Putzflächen – außen wie innen. Deshalb arbeiten der IWM und seine Mitglieder eng mit den Vertretern des ausführenden Handwerks zusammen, die als Fachunternehmer die professionelle Verarbeitung der Putze sicherstellen und den Bauherren individuell und kompetent beraten.

Wir stehen für Qualität:

Industrieverband WerkMörtel e. V.
Düsseldorfer Straße 50
47051 Duisburg
Telefon (02 03) 9 92 39-0
Telefax (02 03) 9 92 39-98
info@iwm.de
www.iwm.de

Bundesverband Ausbau und Fassade im Zentralverband des Deutschen Baugewerbes
Kronenstraße 55-58
10117 Berlin-Mitte
Telefon (0 30) 2 03 14-0
Telefax (0 30) 2 03 14-5 83
stuck@zdb.de
www.stuckateur.de

Bundesverband Farbe Gestaltung Bautenschutz
Gräfstraße 79
60486 Frankfurt am Main
Telefon (0 69) 66 57 5-3 00
Telefax (0 69) 66 57 5-3 50
bvfarbe@farbe.de
www.farbe.de